ИССЛЕДОВАНИЯ СИСТЕМНЫХ СВЯЗЕЙ И ЗАКОНОМЕРНОСТЕЙ ФУНКЦИОНИРОВАНИЯ КОРПОРАТИВНОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ В СРЕДЕ ADABAS И NATURAL: ЭЛЕКТРОННОЕ ИЗДАНИЕ

Второе издание
исправленное и дополненное
Часовских В.П., Воронов М.П.

ИССЛЕДОВАНИЯ СИСТЕМНЫХ СВЯЗЕЙ И ЗАКОНОМЕРНОСТЕЙ ФУНКЦИОНИРОВАНИЯ КОРПОРАТИВНОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ В СРЕДЕ ADABAS И NATURAL: ЭЛЕКТРОННОЕ ИЗДАНИЕ

Второе издание
исправленное и дополненное

Екатеринбург 2012
Chasovskykh V.P., Voronov M.P.

THE RESEARCH OF SYSTEM RELATIONS AND REGULARITIES OF TIMBER ENTERPRISE CORPORATIVE INFORMATION SYSTEM OPERATION IN ADABAS AND NATURAL ENVIRONMENT: ELECTRONIC EDITION

Second Edition
Revised and updated

Yekaterinburg 2012
Монография посвящена вопросам моделирования и функционирования КИС лесопромышленного предприятия в среде ADABAS и Natural. В монографии исследуются вопросы развития и конкретизации возможных подходов к созданию и эксплуатации корпоративной информационной системы (КИС) лесопромышленного предприятия в соответствии с особенностями его структуры, используемых технологий и видов производств. Представленные результаты позволяют оптимизировать модульные структуры КИС, а также адаптировать их в соответствии с изменяющейся структурой организации, производственными и технологическими изменениями.

Для специалистов в области информационных технологий, аспирантов и студентов очной и заочной форм обучения, изучающих дисциплины «Информационный менеджмент», «Информационные технологии», «Математические методы и компьютерное моделирование».

ISBN 978-5-94984-423-6

© М.П. Воронов, В.П. Часовских, 2012
© Уральский государственный лесотехнический университет, 2012
СОДЕРЖАНИЕ

ВВЕДЕНИЕ ... 9

1. СПЕЦИФИКА КОРПОРАТИВНОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ .. 16
 1.1. Структура и модульный состав корпоративной информационной системы лесопромышленного предприятия .. 16
 1.2. Специфика исходных данных информационной системы управления лесопромышленного предприятия ... 30
 1.2.1. Механизированная и машинная валка деревьев 34
 1.2.2. Технологические процессы трелевки древесины 35
 1.2.3. Очистка деревьев от сучьев ... 35
 1.2.4. Погрузка древесины на верхних складах .. 36
 1.2.5. Заготовка сортиментов на лесосеке ... 36
 1.2.6. Лесопильное производство ... 38
 1.2.7. Фанерное производство ... 44
 1.2.8. Производство древесных плит ... 47
 1.2.9. Мебельное производство ... 49
 1.2.10. Вспомогательные подразделения .. 50
 1.3. Методы доступа к БД информационной системы управления лесопромышленного предприятия ... 50
 1.4. Выходы... 52

2. СПЕЦИФИКА СРЕДЫ РЕАЛИЗАЦИИ ИНФОРМАЦИОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ ... 53
 2.1. Специфика СУБД ADABAS .. 54
 2.1.1. Модель и структура данных ... 55
 2.1.2. Структура хранения данных ... 59
 2.1.3. Методы доступа к данным ... 65
 2.1.4. Ограничения целостности ... 71
 2.2. Специфика среды проектирования приложений Natural 73
 2.2.1. SPoD - единая система разработки прикладных приложений 74
 2.2.2. Средства взаимодействия приложений системы с СУБД ADABAS 78
 2.2.3. Графический интерфейс и обработка отчетных форм 79
 2.3. Функционирование системы в условиях распределенной среды 81
 2.4. Стоимость ПО среды проектирования и эксплуатации 84
 2.5. Выходы... 85

3. СИСТЕМНЫЕ СВЯЗИ И ФУНКЦИОНИРОВАНИЕ КOMPONENTOV КОРПОРАТИВНОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ ... 87
 3.1. Уровень организации ядра КИС лесопромышленного предприятия 87
 3.1.1. Основные аспекты организации ядра в СУБД ADABAS 88
 3.1.2. Реляционная структура ядра ... 89
 3.1.3. Иерархическая структура ядра ... 92
 3.1.4. Многоуровневая структура ядра ... 94
 3.1.5. Мультиполярная структура ядра .. 96
 3.1.6. Смешанная структура ядра ... 98
 3.1.7. Рекомендации по выбору структуры ядра для КИС лесопромышленного предприятия ... 100
 3.2. Уровень пользовательских приложений .. 107
 3.2.1. Формирование списка активных элементов пользовательских приложений ... 107
 3.2.2. Формирование списка активных пользовательских приложений 108
 3.2.3. Автоматическая настройка активных пользовательских приложений ... 116
 3.3. Уровень расчетных программ КИС ... 120
 3.3.1. Оптимизация запросов ... 120
 3.3.2. Использование различных типов переменных 125
 3.3.3. Формирование списка активных расчетных программ 132
 3.3.4. Использование системы индикаторов расчетными программами 134
 3.4. Уровень отчетных форм .. 138
 3.4.1. Получение отчетных форм на основе задаваемых критериев 138

5
3.4.2. Формирование списка активных отчетных форм
3.4.3. Автоматическая настройка элементов отчетных форм
3.5. Выводы

4. АНАЛИЗ ЭФФЕКТИВНОСТИ СИСТЕМНЫХ СВЯЗЕЙ И ЗАКОНОМЕРНОСТЕЙ ФУНКЦИОНИРОВАНИЯ КИС ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

4.1. Основные показатели эффективности различных способов организации ядра КИС лесопромышленного предприятия
4.1.1. Реляционная структура ядра
4.1.2. Иерархическая структура ядра
4.1.3. Многоуровневая структура ядра
4.1.4. Мультипольная структура ядра

4.2. Анализ экономической эффективности внедрения разработанных компонентов и системных связей в КИС лесопромышленного предприятия

4.3. Выводы

ЗАКЛЮЧЕНИЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

139
142
145
148
149
150
151
158
159
160
162
CONTENTS

INTRODUCTION

1. TIMBER ENTERPRISE CORPORATIVE INFORMATION SYSTEM SPECIFICITY
 1.1. Timber enterprise corporative information system structure and modular composition
 1.2. Timber enterprise corporative information system input data specificity
 1.2.1. Mechanical and machine felling
 1.2.2. Technological processes of logging
 1.2.3. Lopping off branches
 1.2.4. Wood loading at forest depot
 1.2.5. Wood assortment extraction cutting areas
 1.2.6. Saw-mill production
 1.2.7. Veneer and plywood production
 1.2.8. Wood-based panels production
 1.2.9. Production of furniture
 1.2.10. Service departments
 1.3. Timber enterprise corporative information system DB access methods
 1.4. Summary

2. TIMBER ENTERPRISE CORPORATIVE INFORMATION SYSTEM ENVIRONMENT SPECIFICITY
 2.1. DBMS ADABAS specificity
 2.1.1. Basic model and data structure
 2.1.2. Data storage structure
 2.1.3. Data access methods
 2.1.4. Limitation of integrity
 2.2. Specificity of Natural application project design environment
 2.2.1. SPoD – united system of application design
 2.2.2. Means of communication between system application and DBMS ADABAS
 2.2.3. Graphical user interface and reports operation
 2.3. System operation under the conditions of distributed environment
 2.4. Costs for Software design and operation
 2.5. Summary

3. CORPORATIVE INFORMATION SYSTEM RELATIONS AND UNITS OPERATION
 3.1. Timber enterprise corporative information system kernel design level
 3.1.1. Main aspects of timber enterprise CIS kernel design
 3.1.2. Relational structure of the kernel
 3.1.3. Hierarchical structure of the kernel
 3.1.4. Multilevel structure of the kernel
 3.1.5. Multifield structure of the kernel
 3.1.6. Compound structure of the kernel
 3.1.7. Timber enterprise CIS kernel structure choice recommendations
 3.2. Application level
 3.2.1. Application active elements list forming
 3.2.2. Active applications list forming
 3.2.3. Active applications automated adjustment
 3.3. CIS counting programs level
 3.3.1. Enquiries optimization
 3.3.2. Applying of different format variables
 3.3.3. Active counting programs list forming
3.3.4. Applying of indicators system by counting programs 134
3.4. Reports level 138
 3.4.1. Reports generation on basis of prescribed criterion 138
 3.4.2. Active reports list forming 139
 3.4.3. Reports elements automated adjustment 142
3.5. Summary 145

4. CIS SYSTEM RELATIONS AND OPERATION REGULARITIES
 EFFICIENCY ANALYSIS 148
 4.1. Main efficiency indicators of different types of timber enterprise CIS kernel design 148
 4.1.1. Relational structure of the kernel 148
 4.1.2. Hierarchical structure of the kernel 149
 4.1.3. Multilevel structure of the kernel 150
 4.1.4. Multifield structure of the kernel 151
 4.2. Timber enterprise CIS designed elements and system relations economical efficiency analysis 151
 4.3. Summary 158

CONCLUSION 160
REFERENCES 162
ВВЕДЕНИЕ

В настоящее время в условиях возрастающей конкуренции возможность гибкого реагирования на изменения условий рынка и оптимального распределения производственных ресурсов приобретает все большую значимость для предприятий российской промышленности. В XXI-ом веке в управлении организацией доминируют информация и технологии. Именно информация и управление человеческими знаниями в настоящее время определяют власть в организации. Управление знаниями становится важнейшим фактором создания благ и обеспечивает конкурентные преимущества лишь в том случае, если оно рассматривается не в качестве структурного звена, а понимается и формируется как инструмент управления организацией.

При создании современных систем принятия решений, и в условиях постоянного повышения качества принимаемых решений, автоматизированные системы управления предприятий базируются на все более совершенных математических и информационных моделях, и все более обширная сфера факторов влияния используется в качестве исходных данных анализа. Современные интеллектуальные системы принятия решений на основе анализа прошлых тенденций и анализа эффекта от уже принятых решений, ставят перед необходимостью хранения и обработки все больших объемов данных.

В условиях конкуренции, возможность быстрого реагирования на изменения условий внешней среды, проведения оперативного анализа и своевременного принятия решений, представляет для организации все больший интерес. И предприятие, имеющее преимущество в скорости обработки данных обладает существенным конкурентным преимуществом. Таким образом, существует необходимость постоянного повышения эффективности использования информационных систем, обрабатывающих большие массивы данных. В данном разрезе исследование системных связей и функциональных закономерностей информационных систем, как средств повышения
производительности обработки информации (и как следствие, повышение конкурентоспособности предприятия) представляют широкий практический и научный интерес.

Основу любой автоматизированной системы управления производством (АСУП), а также ее наиболее современной модификации - корпоративной информационной системы (КИС), составляют ее информационные модели и средства их обработки, представленные в совокупности баз данных (БД).

Применение СУБД позволяет существенно повысить надежность и эффективность обработки информации в сложных информационных системах, сократить сроки и затраты на их проектирование, внедрение и эксплуатацию. Еще большая эффективность от применения функционально развитых СУБД может быть получена на этапах их внедрения и эксплуатации в распределенных системах обработки данных за счет использования типовых проектных решений для узлов сети и централизации всех этапов жизненного цикла СУБД. При создании корпоративных информационных систем оптимизация процедур обмена данными в распределенной среде приобретает все большую актуальность.

Немаловажным фактором, определяющим эффективность КИС является выбор СУБД и среды разработки и функционирования программных элементов информационной системы. Характерной чертой современных СУБД является их ориентация на решение прикладных задач, требующих возможность нестандартной обработки данных, а также возможность изменения пользователем требований к прикладным задачам в отношении способа обработки данных, структуры связей между объектами и выходных форм отчета. Построение КИС на основе современных СУБД осуществляется с помощью высокоуровневых, интегрированных с базой данных языков программирования. При этом эффективность сообщения БД со средой разработки информационной системы во многом определяется возможностями этих языков.
В рамках данной работы было принято решение остановить выбор на среде разработки СУБД ADABAS и редактора Natural, как одной из самых эффективных сред, существующих в мире.

СУБД ADABAS (Software AG, Германия) является профессиональной промышленной СУБД, предназначенной для создания ИС и решающей ряд трудноформализуемых прикладных задач. Это многофункциональная СУБД, с успехом применяемая в таких областях деятельности, как управление организацией, обработка научно-технической и библиографической информации, автоматизация проектных работ, обработка экономической информации. Она обеспечивает высокую производительность при работе с большими и сверхбольшими базами данных, обладает развитыми средствами контроля, поддержания и восстановления целостности баз данных.

Natural - платформа Software AG, предназначенная для разработки как транзакционных приложений, так и целых информационных систем. Это высокоуровневый язык программирования, позволяющий существенно сократить сроки и стоимость разработки бизнес-приложений, ограждая разработчиков от сложностей программирования. Natural поддерживает все типы пользовательских интерфейсов, включая Web, графический интерфейс Windows, текстовые терминалы. Приложения, написанные на Natural, могут быть легко интегрированы с любыми внешними сервисами, будь-то XML/Web-сервисы, DCOM, CORBA и др. Приложения на Natural могут работать с большинством реляционных и постреляционных СУБД. Среда разработки и исполнения Natural-приложений существует для всех основных операционных систем и аппаратных платформ, включая мэйнфреймы, Unix, Linux и OpenVMS.

Принимая во внимание, что вопросы создания КИС лесопромышленного предприятия в настоящее время недостаточно изучены и слабо освещены в литературе, необходимость их дальнейшей углубленной проработки и исследований представляется очевидной. Исследование системных связей КИС лесопромышленного предприятия является с одной стороны перспективным...
направлением снижения затрат на внедрение и эксплуатацию КИС, и с другой стороны способствует оптимизации модульных структур КИС и адаптации их к нуждам предприятия с учетом отраслевой и структурной специфики, структурных, производственных и качественных изменений в деятельности предприятия.

Таким образом, данная работа посвящена развитию и конкретизации возможных подходов к созданию и эксплуатации КИС лесопромышленного предприятия в соответствии с особенностями его структуры, используемых технологий и видов производств.
INTRODUCTION

Nowadays, under the conditions of increasing business competition, the ability of adaptable reacting to market changing and optimal manufacturing resources allocating is gaining in importance for the Russian enterprises. In XXI century information and technology predominate in business operation. It’s the information and human knowledge management that determines the power in organization. Knowledge management is becoming a most important factor of material benefits creation; and also it assures competitive advantages only if it is not regarded as a structural unit, but is understood and organized as a management implement.

In order to run a modern decision-making system, and taking into account the need of constant quality increasing of decisions that are made, automated management systems have to rest on more and more complete mathematical and information models; and increasingly wider sphere of influence factors is used as the source data for the analysis. Contemporary intelligence systems of making decisions, which are based on the hands-on tendency analysis and on the analysis of the effect that has been made by accepted decisions, necessitate storage and processing of more and more volume of data.

Under the conditions of competition the abilities of fast reacting to external environment changing, rapid conducting of analysis and opportune making of decisions is getting to be more and more attractive for businesses. Thus, an enterprise, which has advantages in the field of data processing rate, also has an essential competitive advantage. Accordingly, there is the necessity of permanent efficiency increasing of information systems that process data bulks. In this context the research of information systems relations and operation regularities as the means of processing efficiency improvement (and, as the consequence, competitive improvement of the enterprise) is of wide practical and scientific interest.

The base of any Computer Integrated Manufacturing (CIM), including it’s the most contemporary modification Corporative Information System (CIS), consists of
information models and the means of their processing, which are realized as a set of databases (DB).

Application of DBMS enables to increase essentially dependability and efficiency of complex systems data operation, and to reduce the time and the costs that are necessary for systems design and realization and operation. Also, at the stage of realization and operation in data processing distributed systems, even more efficiency from application of functionally advanced DBMS can be achieved owing to deployment of type design decisions for the network nodes and centralization of all the stages of DBMS life cycle. And in case of running a corporate information system, the optimization of data processing procedures in distributed environment becomes more and more urgent.

A factor of no small importance, which determines the efficiency of a CIS, is the choice of DBMS and environment for design and operation of information system program elements. One of the characteristics of a contemporary DBMS is its orientation for application solutions, which require the possibility of out-of-order data processing, and also the possibility of changing by users the application solutions requirements for data processing methods, for the structure of relations between the elements and for reporting forms. Contemporary advanced DBMS-based CIS development is realized with the help of high-level programming languages, integrated into DBMS. For all that, the efficiency of communications between a DB and the information system design environment is in high degree conditioned on the potential of these languages.

In the context of this paper, there was made the decision to stop the search of development environment on the DBMS ADABAS and Natural editor, as on one of the most effective environments that exist in the world.

DBMS ADABAS is a professional technical DBMS that is intended for information systems design and for laboriously formalizable applications solutions. This is multifunctional DBMS, successfully applied in such fields of activity as Organisation Management, Scientific and Technical and Bibliographic Data
Operation, Design Automation, Economic Information Operating. In order to operating large and very large databases (LDB and VLDB), it provides efficient performance and has advanced means of control, maintenance and recovery of data integrity.

Natural is a Software AG platform, which is assigned for development of both transaction applications and the whole information systems. It’s a high-level programming language that enables appreciably to reduce the time and the costs that are necessary for business applications design and delivers developers from the programming difficulties. Natural provides all the kinds of user interfaces, including Web, Windows graphical interface, character-at-a-time terminals. Applications, which were designed in Natural, can be easily integrated with any external service, such as XML/Web-services, DCOM, CORBA, etc. Natural applications can maintain the majority of relational and post-relational databases. The environment of design and operation of Natural applications is compatible for all main operating systems and hardware platform, including mainframes, Unix, OS2, OpenVSM, etc.

Taking into account that timber enterprise CIS creation aspects are not adequately studied and are little explored in scientific literature nowadays, the necessity of its further profound studying and searching seems evident. The research of system relations of timber enterprise CIS, from one hand, is a perspective direction of CIS development and operation costs reduction, and, from the other hand, stimulates CIS modal units optimization and their adaptation to the needs of the enterprise in correspondence with branch-wise and structural features, branch-wise, production and quality changes in the enterprise activity.

Thus, this paper is dedicated to development and instantiation of feasible approaches to creation and operation of timber enterprise corporative information system in accordance to the features of its structure, exploitable technologies and productions.
1. СПЕЦИФИКА КОРПОРАТИВНОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

1.1. Структура и модульный состав корпоративной информационной системы лесопромышленного предприятия

Корпоративная информационная система (КИС) рассматривается в виде совокупности программных модулей, каждый из которых осуществляет управление конкретной сферой деятельностью организации. Программные модули также включают концепции и методологии планирования и управления в различных сферах деятельности организации. Выбор состава модулей в рамках информационной системы зависит от размеров организации, ее технологических особенностей, сферы ее деятельности, особенностей организации сбыта продукции и т.д.

При создании КИС промышленного предприятия наиболее предпочтительной концепцией является ERP, т.к. позволяет планировать все виды ресурсов предприятия.

Согласно описаниям, встречающимся в литературе [6, 7, 24, 58, 62, 100, 101, 103, 104] КИС промышленного предприятия, разрабатываемая в соответствии с концепцией ERP, должна состоять из следующих функциональных модулей:

1. Программный модуль управления производством (включает управление лесопильным производством, производством древесных плит, мебельным производством и других блоков управления, в зависимости от специфики предприятия).

2. Программный модуль управления производственными запасами.

3. Программный модуль управления сбытом готовой продукции.

4. Программный модуль управления учетной деятельностью.

5. Программный модуль управления планово-аналитической деятельностью.
Управление производственными запасами подразумевает формирование оптимального объема запасов предприятия, достаточного для обеспечения процесса производства в объеме соответствующим потребностям рынка. Т.к. излишки производственных запасов «замораживают» оборотный капитал организации, а также увеличивают затраты на хранение, объем запасов должен быть всегда регламентированным в соответствии с уровнем спроса за прогнозируемый период [113, 114].

Также следует учитывать факт, что в связи с сезонными колебаниями уровня цен на некоторые группы материалов в целях снижения общих затрат целесообразно проводить закупки товара в периоды, когда цена является наименьшей. При этом неотъемлемым условием формирования дополнительных запасов является:

$$\Delta_i > C_i + E_i$$

где

Δ_i – изменение цены единицы i-го материала за счет фактора сезонности,

C_i – стоимость хранения единицы i-го материала за период хранения,

E_i – альтернативные издержки, прибыль, которая могла быть получена при использовании суммы, затраченной на приобретение единицы i-го товара в прочих видах деятельности предприятия.

Потребность организации в тех или иных запасах рассчитывается на основе анализа спроса [114]. Также на основе объема спроса и нормативных данных расхода материалов на производство единицы изделия рассчитываются объемы запасов всех видов материалов, и полученные результаты заносятся в БД в соответствии с номенклатурой материалов.

Номенклатура требуемых материалов составляется в соответствии с потребностями организации по одному из описанных ниже видов модели структуры.

Далее составляется план проведения закупок материалов (автоматический вывод формы). По мере проведения закупок фактические объемы каждого из
видов материалов сравниваются с запланированными, при этом данные об объемах заносятся в БД.

При проведении закупок одного вида товаров несколькими партиями данные об объеме запаса суммируются, и при превышении фактического объема запаса материалов над запланированным значением, выдается сообщение о превышении объема запаса и сумма дополнительных затрат, связанных с хранением материалов и «заморозкой» капитала.

Модуль управления производственными запасами может быть отображен в виде следующей схемы (рис 1.1.).

На рис. 1.1. введены следующие условные обозначения:
1 – данные за предыдущий период.
2 – результаты анализа хозяйственной деятельности; результаты прогноза объема спроса.
3 – результаты анализа хозяйственной деятельности; результаты прогноза объема спроса; нормы расхода материалов на производство единицы продукции; данные о материалах, цены на которые подвержены сезонным колебаниям.
4 – результаты планирования производственных запасов.
5 – результаты планирования производственных запасов.
6 – фактические данные о формировании производственных запасов.
7 – данные о дополнительных затратах.

Основными функциями планово-аналитического модуля являются:
1. Выявление данных о прогнозируемом объеме продаж на основе:
 a. Данных об объемах продаж за предыдущие периоды.
 b. Тенденций развития рынка (к понижению или повышению спроса на данную продукцию).
2. Анализ хозяйственной деятельности.
Рис 1.1. Схема модуля управления производственными запасами

База данных

- анализ хозяйственной деятельности
- выявление видов материалов, цены на которые чувствительны к сезонным колебаниям
- прогнозирование объема спроса

Планирование производственных запасов

Вывод форм (приказы, договоры закупок, прочие формы)

Формирование производственных запасов (проведение закупок, заготовка древесины) согласно полученных форм

Сравнение фактических данных с плановыми

Выявление суммы дополнительных затрат в случае, если фактический объем запаса не соответствует запланированному

Рис 1.1. Схема модуля управления производственными запасами
3. Составляет планы на отчетный период в соответствии со стратегическими целями и проведенного анализа хозяйственной деятельности по видам деятельности:
 a. Планирование производственных запасов.
 b. Планирование фонда заработной платы.
 c. Планирование численности персонала и прочие.

Прогнозирование объема продаж проводится по следующим этапам:
1. Формирование запросов данных за предшествующие периоды к БД.
2. Фormalизация обработки запрашиваемых данных в соответствии с принятыми на предприятии статистическими и математическими методами.
3. Вывод данных в виде стандартизированных форм и предоставление обработанных данных для использования в прочих видах деятельности предприятия.

Модуль управления планово-аналитической деятельностью представлен в виде схемы (рис.1.2.).

На рис. 1.2. введены следующие условные обозначения:
1 – данные за предыдущий период деятельности.
2 – результаты проведения анализа хозяйственной деятельности.
3 – данные о состояниях внешней среды предприятия за предыдущие периоды.
4 – результаты проведения анализа внешней среды предприятия.
5 – результаты проведения анализа хозяйственной деятельности.
6 – результаты планирования.

Создание модуля управления учетной деятельностью подразумевает создание системы, позволяющих пользователям вводить данные в БД, а затем, на основе автоматических расчетов требуемых величин, получать формы первичной документации, а также, отчетные формы [53].

Модуль управления производством отражен в виде схемы (рис 1.3.).
Рис 1.2. Схема управления планово-аналитической деятельностью
Рис 1.3. Схема модуля управления производством

На рис. 1.3. введены следующие обозначения:

1 – данные об объеме производственных запасов.
2 – данные об объеме материалов, необходимых в производстве.
3 – данные о видах и объеме бракованных материалов.
4 – данные о полученной готовой продукции.
5 – данные о уже проводимых ремонтах оборудования.
6 – данные о проводимых ремонтах оборудования.
7 – данные о численности персонала посменно.
8 – данные о фактической численности персонала посменно.

При осуществлении сбыта продукции наряду с маркетинговой
деятельностью осуществляется выработка плана поставок на основе данных о
потребителях продукции предприятия и данных о наличии готовой продукции.
Схема управления маркетинговой деятельностью схожа со схемой управления
планово-аналитической деятельностью (рис 1.2.).
Схема модуля управления сбытом готовой продукции показана на рис 1.4.
На рис. 1.4. введены следующие обозначения:
1 – данные о потребителях продукции предприятия и о готовой
продукции.
2 – результаты планирования поставок.
3 – результаты планирования поставок.
4 – фактические данные о проведении поставок.
5 – данные о излишке или недостатке готовой продукции и связанных с
ним убытков.
При помощи программного модуля управления учетной деятельностью
осуществляется структурирование, хранение, редактирование и интерпретация
dанных различных сфер деятельности предприятия в соответствии со схемами
на рис. 1.1., 1.2., 1.3., 1.4.
Всеми программными модулями КИС лесопромышленного предприятия
выполняются следующие функции:
1. Планирование продаж и производства. Результатом действия блока
является разработка плана производства основных видов продукции.
2. Управление спросом. Данный блок предназначен для прогноза будущего спроса на продукцию, определения объема заказов, которые можно предложить клиенту, определения спроса дистрибьюторов и др.

3. Укрупненное планирование мощностей. Используется для конкретизации планов производства и определения степени их выполнимости.
4. Основной план производства (план-график выпуска продукции). Определяется продукция в конечных единицах (изделиях) со сроками изготовления и количеством.

5. Планирование потребностей в материалах. Определяются виды материальных ресурсов (сборных узлов, готовых агрегатов, покупных изделий, исходного сырья, полуфабрикатов и др.) и конкретные сроки их поставки для выполнения плана.

6. Спецификация изделий. Определяет состав конечного изделия, материальные ресурсы, необходимые для его изготовления, и др. Фактически спецификация является связующим звеном между основным планом производства и планом потребностей в материалах.

7. Планирование потребностей в мощностях. На данном этапе планирования более детально, чем на предыдущих уровнях, определяются производственные мощности.

8. Маршрутизация/рабочие центры. С помощью данного блока конкретизируются как производственные мощности различного уровня, так и маршруты, в соответствии с которыми выпускаются изделия.

9. Проверка и корректировка цеховых планов по мощностям.

10. Управление закупками, запасами, продажами.

11. Управление финансами (ведение Главной книги, расчеты с дебиторами и кредиторами, учет основных средств, управление наличными средствами, планирование финансовой деятельности и др.).

12. Управление затратами (учет всех затрат предприятия и калькуляция себестоимости готовой продукции или услуг).

В общем виде, модель КИС промышленного предприятия (а также любой из программных модулей КИС) может быть представлена в виде схемы (рис. 1.5.).

На рис. 1.5. введены следующие условные обозначения:

1 – обращение к программам управления данными (запуск программ).
2 – запросы данных, проведение выборки данных, внесение данных и пр.
3 – данные.
4 – данные, результаты выборки, результаты.
5 – обращение к программам расчета величин и показателей на основе полученных данных (запуск программ).

Рис 1.5. Схема КИС промышленного предприятия (программных модулей КИС промышленного предприятия)

6 – результаты проведения анализа.
7 – представление результатов расчетов в виде форм, результаты.
8 – формы.

Далее приведено описание компонентов процесса обработки данных в рамках КИС промышленного предприятия [58]:

26
Ядро системы (базы данных). В файлах структуры БД фиксируются структура хранения данных и свойства обработки для каждой единицы данных (для каждого поля данных). В файлах структуры БД могут быть отражены следующие составляющие системы:

– система критериев оценки конкурентных преимуществ, и состояния внешней среды;

– показатели и индикаторы, на основе которых производится анализ и расчеты;

– система показателей, используемая в производственных процессах предприятия (в т.ч. нормативы, коэффициенты, шифры, ставки и т.д.);

– внутренние показатели организации (сведения о сотрудниках, произведенной продукции, данные о затратах и пр.);

– результаты вычислений, произведенных в результате процесса принятия решений на основе внутренних стандартов, показателей и индикаторов;

– прочие.

Программы и алгоритмы взаимодействия с ядром системы. Основное назначение данных программ – осуществление управления БД. Все программы и алгоритмы можно подразделить на следующие группы:

– программы первичной обработки данных и ввода данных в БД (в т.ч. программы проверки вводимых данных на соответствие);

– программы, осуществляющие чтение данных в БД в заданной последовательности;

– программы, осуществляющие выборку данных из БД по заданным параметрам (критериям);

– программы интерпретации показателей и индикаторов;

– программы расчета значений на основе запрашиваемых данных.

Все программы и алгоритмы представляют собой программный код. В целях избежания ошибок при чтении и вставке данных, необходимо создание программных кодов всех видов запросов к БД и их последующая
стандартизация, т.е. установление внутриорганизационных стандартов для процедур получения и вставки данных с учетом периодов времени, за которые запрашиваются (вставляются) данные, типов данных и пр. При этом отпадает необходимость написания программы-запроса при создании пользовательских приложений, вместо чего вызывается уже стандартизированная программа, которая предоставляет обработанные данные в окно диалога.

Пользовательские приложения. Назначение пользовательских приложений в рамках КИС промышленного предприятия – управление данными. Пользовательские приложения обеспечивают сотрудников предприятия возможностями:

–Получения данных и результатов выборки за различные периоды времени. Периоды времени задаются ввода соответствующего параметра, который передается программе, исполняющей выборку в соответствии со значениями параметра.

–Ввода данных для внесения в БД и дальнейшей обработки. В данном случае приложение должно предоставлять пользователю для заполнения форму, содержащую поля ввода данных. По окончании заполнения пользователем формы вызывается исполняющая программа, которая обеспечивает ввод данных в БД. В целях избежания ошибок ввода рекомендуется предварительная проверка исполняющей программой введенных данных на соответствие требованиям к формату данных перед осуществлением процедуры ввода данных в БД.

–Редактирования ранее введенных данных. Как правило, подразумевается следующая последовательность: чтение (выборка) данных из БД; обработка полученных данных в окне пользовательского приложения; вставка данных в БД. Данная процедура представляет собой совокупность двух вышеперечисленных.
– Удаление ранее вводимых данных. В целях обеспечения возможности восстановления данных в случае непроизвольного удаления данных пользователями рекомендуется следующая организация процедуры удаления:

– Создание однобайтового поля индикатора активности учетной записи при проектировании структуры БД (таблица FDT).

– Чтение данных последовательно, по каждой учетной записи, подлежащей удалению и вывод данных в окне пользовательского приложения.

– Присвоение полю индикатора активности каждой удаляемой учетной записи значения, соответствующего неактивному статусу учетной записи по команде пользователя, исходящей из приложения.

– Вставка данных в БД.

– Редактирование текста внутри окна пользовательского приложения.

– Отображение полученных данных в единый формат и возможность манипулирование данными, а также возможность вызова программ дальнейшего расчета для показателей, указанных посредством окна приложения.

– Отображение и печать форм, сформированных после проведения основных расчетов.

Расчетные программы и алгоритмы. Расчетные программы и алгоритмы осуществляют основные расчеты и преобразования и образуют модульный состав КИС промышленного предприятия. Математические и статистические методы, оптимизационные модели, модель «дерево решений» и пр. могут реализовываться в рамках программных модулей программистами самого предприятия, а также приобретаться у разработчиков программных и расчетных модулей (в т.ч. интегрированные пакеты SAS) [98]. Рассчитанные величины при необходимости окончательно интерпретируются в соответствии с принятыми на предприятии стандартами, и передаются в формы.
Формы. Все результаты расчетов должны отображаться в виде стандартных форм (в соответствии ГОСТам, либо внутренним стандартам, в зависимости от назначения).

1.2. Специфика исходных данных информационной системы управления лесопромышленного предприятия

Определим специфику учетных данных в КИС предприятий лесной промышленности. Теория современного учета содержит основные правила логических и вычислительных действий над исходной и промежуточной информацией, преобразуемой учетом в интересах получения наиболее точных базисных (плановых, нормативных), контрольных (расчетных) и отчетных (результататных) показателей деятельности предприятия при фактических параметрах производственных и хозяйственных процессов [49, 71, 72, 78, 81, 86, 90, 91]. Теория формирования учетных записей БД лесопромышленного предприятия представлена в [115-117].

Определяющим фактором при создании ядра КИС лесопромышленного предприятия, а также программ и алгоритмов обработки данных являются специфика типов данных деревообрабатывающих производств, а также особенности учета в данной отрасли и типы отчетных форм.

Любую запись с одним (стоимостным) основанием можно представить как учетную фразу Мi:

Мi=θ;ψ;Db;Kr;P

где θ - технологическая характеристика записи;
ψ - обозначение признаков документа;
Db и Kr – дебет и кредит записи, т.е. шифры соответственно дебетуемых или кредитуемых счетов;
P – стоимостная характеристика сальдо или операции.

В СБЗ с двумя основаниями добавляется идентификатор натуральной характеристики Н, так что учетная фраза Мi имеет вид
Мi=θ;ψ;Db;Kr;P;Н.

Технологическая характеристика записи θ представляется в виде:
θ=Dp;Wt;It

где Dp - шифр подразделения;
Wt - шифр вида учетной работы;
It - шифр характера информации (saldo дебета или кредита, прямая или
сторнировочная проводка, итоговая запись, норматив).

Обозначение признаков документа ψ представляется в виде:
ψ=DD;MM;YYYY;Num

где DD – число;
MM – месяц;
YYYY – год;
Num – номер первичного документа.

Дебет (Db) и кредит (Kr) записи представляются в виде:
Db=dSinS;dSs;dAs
Kr=kSinS;kSs;kAs

где SinS1 - синтетический счет 1-го порядка;
Ss – субсчет;
As - аналитический счет (первые буквы d или k в названиях обозначают
принадлежность соответственно к дебету или кредиту).

При необходимости могут использоваться аналитические счета второй,
третьей ступеней и т.д.

В развернутом виде учетная фраза Мi имеет вид:
Мi=Dp;Wt;It;DD;MM;YYYY;Num;dSinS;dSs;dAs;KSinS;kSs;kAs;P

для СБЗ с одним основанием и
Мi=Dp;Wt;It;DD;MM;YYYY;Num;dSinS;dSs;dAs;KSinS;kSs;kAs;P;Н

для СБЗ с двумя основаниями.
Таким образом, при помощи СБЗ, в каждой из которых содержатся данные для отнесения операции на соответствующий счет, фиксируется информация о затратах на производство.

Кроме хранилища учетных данных в КИС лесопромышленного предприятия необходимо предусматривать хранилище данных для плановых величин.

В процессе эксплуатации КИС расчетными программами и алгоритмами на основе оптовых и планово-расчетных цен, ценностных коэффициентов разновидностей пиломатериалов, комбинации коэффициентов сортности фанерных изделий, коэффициентов для вычисления нормированного расхода сырья, коэффициентов перевода фактического количества разнородных лесоматериалов и заготовок из древесины в условный материал производится расчет обобщающих величин. После чего фактически полученные результаты сравниваются с плановыми значениями, интерпретируются и представляются в виде отчетных форм.

Идентификаторы элементов учетных записей, формируемых по хозяйственным операциям, приведены в табл. 1.1. Также в табл. 1.1. для каждого параметра приведено количество возможных значений.

Рассмотрим специфику формирования и примеры учетных записей для нескольких видов производств деревообрабатывающей промышленности.

Переменные элементов записей производственного учета

<table>
<thead>
<tr>
<th>Элементы записей</th>
<th>Переменные</th>
<th>Количество значений</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Структурное подразделение предприятия</td>
<td>ξ</td>
<td>1…15</td>
</tr>
<tr>
<td>Производственный поток, стадия производства</td>
<td>ПП</td>
<td>1…6</td>
</tr>
<tr>
<td>Хозрасчетная бригада, участок</td>
<td>e</td>
<td>1…12</td>
</tr>
<tr>
<td>Таблица 1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Номер смены (в цехе, отделении)</td>
<td>I</td>
<td>1…3</td>
</tr>
<tr>
<td>Калькулируемый объект (изделие, сортимент)</td>
<td>B</td>
<td>1…20</td>
</tr>
<tr>
<td>Наименование объекта (изделия, сортимента)</td>
<td>B_{ДЕТ}</td>
<td>1…30</td>
</tr>
<tr>
<td>Группа лесов</td>
<td>F</td>
<td>1…3</td>
</tr>
<tr>
<td>Категория рубки</td>
<td>R</td>
<td>1…10</td>
</tr>
<tr>
<td>Тип транспорта</td>
<td>T_s</td>
<td>1…20</td>
</tr>
<tr>
<td>Тип технологического процесса лесозаготовки</td>
<td>T_t</td>
<td>1…4</td>
</tr>
<tr>
<td>Схема разработки лесосеки</td>
<td>S_f</td>
<td>1…5</td>
</tr>
<tr>
<td>Схема разработки пасеки</td>
<td>S_p</td>
<td>1…5</td>
</tr>
<tr>
<td>Тип валочной машины</td>
<td>M_v</td>
<td>1…15</td>
</tr>
<tr>
<td>Способ трелевки</td>
<td>S_t</td>
<td>1…10</td>
</tr>
<tr>
<td>Тип трелевочной машины</td>
<td>M_s</td>
<td>1…20</td>
</tr>
<tr>
<td>Тип сучкорезной машины</td>
<td>M_c</td>
<td>1…20</td>
</tr>
<tr>
<td>Тип погрузчика</td>
<td>M_l</td>
<td>1…10</td>
</tr>
<tr>
<td>Тип технологического комплекта оборудования заготовки сортиментов</td>
<td>M_t</td>
<td>1…3</td>
</tr>
<tr>
<td>Способ раскряжевки</td>
<td>S_r</td>
<td>1…15</td>
</tr>
<tr>
<td>Метод раскряжевки</td>
<td>M_r</td>
<td>1…3</td>
</tr>
<tr>
<td>Калькуляционная статья (подстатья) расхода</td>
<td>u</td>
<td>1…20</td>
</tr>
<tr>
<td>Статья выпуска продукции (распределение услуг)</td>
<td>u'</td>
<td>1…20</td>
</tr>
<tr>
<td>Объем заготовленного материала, м^3</td>
<td>Q</td>
<td>0…∞</td>
</tr>
<tr>
<td>Количество заготовленного материала, шт</td>
<td>n</td>
<td>0…∞</td>
</tr>
<tr>
<td>Количество произведенного изделия (сортировка)</td>
<td>V</td>
<td>0…∞</td>
</tr>
<tr>
<td>Планово-расчетная цена за единицу материала, руб</td>
<td>c</td>
<td>0…∞</td>
</tr>
<tr>
<td>Планово-расчетная цена за единицу готового изделия, руб</td>
<td>r</td>
<td>0…∞</td>
</tr>
<tr>
<td>Абсолютная величина отклонения от нормы</td>
<td>±D</td>
<td>0…∞</td>
</tr>
<tr>
<td>Причина отклонения от нормы</td>
<td>w_D</td>
<td>1…20</td>
</tr>
<tr>
<td>Виновник отклонения от нормы</td>
<td>r_D</td>
<td>1…10</td>
</tr>
<tr>
<td>Название сортимента (пиломатериала)</td>
<td>М</td>
<td>1…5</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Технические характеристики объекта:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>древесная порода</td>
<td>р</td>
<td>1…7</td>
</tr>
<tr>
<td>назначение (специальное)</td>
<td>α</td>
<td>1…17</td>
</tr>
<tr>
<td>способ распиловки</td>
<td>γ</td>
<td>1…3</td>
</tr>
<tr>
<td>Сорт</td>
<td>β</td>
<td>1…15</td>
</tr>
<tr>
<td>длина, мм</td>
<td>l</td>
<td>0…30</td>
</tr>
<tr>
<td>толщина, мм</td>
<td>a</td>
<td>0…10</td>
</tr>
<tr>
<td>ширина, мм</td>
<td>b</td>
<td>0…30</td>
</tr>
<tr>
<td>диаметр, мм</td>
<td>d</td>
<td>0…25</td>
</tr>
</tbody>
</table>

Продолжение табл. 1.1.

<table>
<thead>
<tr>
<th>Категория влажности</th>
<th>λ</th>
<th>1…3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номер пакета</td>
<td>s</td>
<td>1…50</td>
</tr>
<tr>
<td>Продолжительность простой оборудования, ч</td>
<td>tпр</td>
<td>1…70</td>
</tr>
<tr>
<td>Причина простой оборудования</td>
<td>Ппр</td>
<td>1…20</td>
</tr>
<tr>
<td>Категория качества лесоматериалов</td>
<td>g</td>
<td>1…10</td>
</tr>
</tbody>
</table>

1.2.1. Механизированная и машинная валка деревьев

При осуществлении механизированной и машинной валки деревьев в журналах учета фиксируются учетные сообщения следующего вида:

ПП;I;e;DD;MM;YYYY;Num;F;R;T₁;S₁;S₂;Mᵥ;Q;n

При этом наиболее частыми запросами к БД будут являться запросы по следующим полям:

- [ПП];[I];e;DD;MM;YYYY;Q;n
- [ПП];I;e;DD;MM;YYYY;F;R;Q;n
- [ПП];[I];[e];DD;MM;YYYY;[T₁];S₁;S₂;Mᵥ
- [DD];[MM];[YYYY];Mᵥ;Q;n
- [DD];[MM];[YYYY];F;R;Q;n

34
Кроме того, к рассматриваемой БД будут выполняться статистические запросы на подсчет количества записей по комбинациям полей:

- F;MM;YYYY
- R;MM;YYYY
- S;MM;YYYY
- S_p;MM;YYYY
- M;MM;YYYY.

1.2.2. Технологические процессы трелевки древесины

Технология и организация трелевки древесины изложена в [127-129]. Исходными данными для ввода учетных сообщений о количестве перемещенных хлыстов в БД, являются маршрутные листы, заполняемые исполнителями последовательных операций трелевки древесины. Данные сообщения имеют следующую постоянную структуру:

ПП;I;е;DD;MM;YYYY;Num;p;S;M_;Q;n

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

- е;[p;][Q;][S;][M_;]DD;MM;YYYY;
- ПП;[p;][Q;][S;][M_;]DD;MM;YYYY;
- I;[p;][Q;][S;][M_;]DD;MM;YYYY;
- I;[PPI;][е;]DD;MM;YYYY.

1.2.3. Очистка деревьев от сучьев

Технология и организация очистки деревьев от сучков изложена в [123]. Работа по очистке деревьев характеризуется количеством обработанных хлыстов данной древесной породы по бригадам с использованием определенных типов сучкорезных машин, с учетом группы лесов и категории
рубки. Согласно записям в журнале учета формируют ежесменное учетное сообщение вида:

ПП;I:e;DD:MM;YYYY;Num;p:F;R;Tₜ;Mₑ;Q;n

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

–e:[p:]F;R;Tₜ;Mₑ;Q;DD;MM;YYYY;
–ПП:[p:] F;R;Tₜ;Mₑ;Q;DD;MM;YYYY;
–p:F;R;Q;DD;MM;YYYY;
–F;R;Q;DD;MM;YYYY.

Также к рассматриваемой таблице БД будут выполняться статистические запросы на подсчет количества записей, например, по комбинациям полей e;MM;YYYY и Q:MM;YYYY.

1.2.4. Погрузка древесины на верхних складах

Технология и организация погрузки древесины подробно изложена в [124-126].

Фиксируемые учетные сообщения, в данном случае, имеют вид:

ПП;I:e;DD:MM;YYYY;Num;p:F;R;Mᵢ;Q;n

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

–e:[p:]F:[R:]Q;DD;MM;YYYY;
–ПП:[p:]F:[R:]Q;DD;MM;YYYY;
–[p:]F:[R:]Q:[ПП:]e;DD;MM;YYYY.

1.2.5. Заготовка сортиментов на лесосеке

Технология и организация раскряжевки хлыстов подробно изложена в [118-122]. Основным первичным документом, отражающим работу бригад, является сменный рапорт.

Обработка данных сменного рапорта позволяет получать следующие документы:
- ведомость заготовленных сортиментов;
- регистров, характеризующих использование каждой бригады в связи с применяемой технологией раскрежевки;
- ведомость выполнения плана заготовки сортиментов;
- ведомость объемов сортиментов по группам древесных пород, назначению и диаметрам за каждые сутки отчетного месяца в штуках и объему по каждой позиции диаметров;
- ведомость объемов произведенных работ по сменам (за каждую дату), бригадам, группам древесных пород и назначению сортиментов в штуках, погонных и кубических метрах с распределением объема по видам сортиментов и фиксацией кубомассы; в данной ведомости могут фигурировать и ежемесячные итоговые сведения о простоях оборудования;
- другие ведомости и обобщающие группировки данных.

Формирование сменного рапорта происходит путем фиксирования в БД КИС предприятия ежесменных учетных сообщений следующего вида:

ПП;I;e;DD;MM;YYYY;Num;p;β;l;d;tпр;Ппр;н;Q;с;Sr;Mr;Mt

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

-e;[p;][β;][l;][d;]DD;MM;YYYY;
-ПП;[p;][β;][l;][d;]DD;MM;YYYY;
-Сr;[p;][β;][l;][d;]DD;MM;YYYY;
-Мr;[p;][β;][l;][d;]DD;MM;YYYY;
-Мt;[p;][β;][l;][d;]DD;MM;YYYY;
-p;[β;]DD;MM;YYYY;
-β;DD;MM;YYYY;
-l;[d;]DD;MM;YYYY;
-d;DD;MM;YYYY;
-tпр;Ппр;ПП;[e;][I;]DD;MM;YYYY.
Также к рассматриваемой таблице БД будут выполняться статистические запросы на подсчет количества записей, например, по комбинациям полей:

- e;MM;YYYY;
- ПП;MM;YYYY;
- Пп;MM;YYYY.

В целях обеспечения учетного контроля процесса раскроя хлыстов на сортименты, по данным текущей регистрации создаются ежесменные учетные сообщения с информацией о полученных сортиментах по признакам древесной породы, назначения, характера обработки, сорта, длины, толщины и ширины пиломатериала (или с меньшим набором признаков). Чаще всего учетное сообщение строится по схеме:

ПП;I;e;DD;MM;YYYY;Num;M;p;α;γ;β;l;V;r;P

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

- ПП;[M;][p;][α;][γ;][β;][l;]DD;MM;YYYY;
- e;[M;][p;][α;][γ;][β;][l;]DD;MM;YYYY;
- I;[M;][p;][α;][γ;][β;][l;]DD;MM;YYYY;
- M;[p;][α;][γ;][β;][l;]DD;MM;YYYY.

Также к рассматриваемой таблице БД будут выполняться статистические запросы на подсчет количества записей, например, по комбинациям полей ПП;MM;YYYY и e;MM;YYYY.

1.2.6. Лесопильное производство

Технология и организация лесопильного производства подробно изложена в [70-74].

Первичные данные о распиленном пиловочнике по всем товарным признакам фиксируют в сменных рапортах. Посменная регистрация раскроя пиловочника и выпуска пиломатериалов на отдельных потоках лесопильного цеха позволяет оперативно получать как натуральные показатели
качественного, спецификационного и количественного выходов, так и синтетический показатель ценностного выхода по каждой бригаде. Поскольку ценностный выход пиломатериалов наиболее полно характеризует усилия бригады в достижении оптимального уровня использования пиловочного сырья, раздельный (по потокам) учет пиломатериалов на сортировочной площадке по древесным породам, размерам, сортам и назначению абсолютно необходим. Последующая группировка выпущенных изделий должна обеспечить побригадную оценку выпуска в оптовых ценах на каждом потоке за любой отчетный период.

Сменный рапорт о распиловке леса на поточной линии - специфический документ, служащий одновременно для фиксации производственного потребления пиловочника и для отражения работы лесопильных рам по его распилю. Поэтому в рапорт записывают все основные признаки, характеризующие распиленный пиловочник: сортимент (назначение, порода и сорт), размеры (длину и диаметр) и количество (в штуках и кубометрах) по каждому сочетанию длины и диаметра пиловочника.

Последующий свод исходной информации, содержащейся в сменных рапортах о распиловке леса, приводит к получению различных обобщающих документов: во-первых, ведомостей распиленного сырья, во-вторых, регистров, характеризующих использование каждой лесопильной линии в связи с применяемой технологией раскроя древесины.

Для оперативного управления раскроем пиловочного сырья на деревообрабатывающих предприятиях используется обычно следующий перечень сводных документов:

- ведомость выполнения плана раскроя сырья, в которой приводятся ежесуточные сведения о количестве распиленного пиловочника в штуках данных диаметров по номерам поставов, принятых в плане раскроя;
— ведомость объемов распиленного пиловочника по группам древесных пород, назначению и диаметрам бревен за каждые сутки отчетного месяца в штуках и объему по каждой позиции диаметров;
— ведомость объемов распиленного пиловочника по сменам (за каждую дату), рамным потокам (бригадам), группам древесных пород и назначению пиловочника в штуках, погонных и кубических метрах с распределением объема по видам распиловки (вразвал, с брусовкой) и фиксацией кубомассы; в данной ведомости могут фигурировать и ежемесячные итоговые сведения о простых лесопильных рам;
— другие ведомости и обобщающие группировки данных о распиленном лесе.

Для правильного определения стоимости пиловочного сырья, раскроенного хозрасчетной бригадой за смену, декаду, месяц, необходимо создавать ежесменно учетные сообщения следующего вида:

ПП;I;e;DD;MM;YYYY;Num;р;β;l;d;IπP;IπP;π;Q;c;P (1.1)

Расчетное количество записей этого типа, накапливаемое в БД за год, определяется по схеме:

и составляет:

— максимальное - 1735020000;
— среднее - 622080.

По аналогичной схеме определяется расчетное количество записей всех типов записей, рассматриваемых далее.

Размер файла БД при среднем кол-ве записей будет равен 42*622080=26127360 байт, где 42 – это размер одной записи данного типа в байтах.
Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

- e;[p;][β;][l;][d;]DD;MM;YYYY;
- ПП;[p;][β;][l;][d;]DD;MM;YYYY;
- p;[β;]DD;MM;YYYY;
- β;DD;MM;YYYY;
- l;[d;]DD;MM;YYYY;
- d;DD;MM;YYYY;
- тПр;ППр;ПП;[e;][I;]DD;MM;YYYY.

Также к рассматриваемой таблице БД будут выполняться статистические запросы на подсчет количества записей, например, по комбинациям полей:

- e;MM;YYYY;
- ПП;MM;YYYY;
- ППр;MM;YYYY.

В лесопильном производстве под учетным контролем находится далее процесс основной сортировки досок-полуфабрикатов, полученных из раскроенного пиловочника. На этой производственной стадии по данным текущей регистрации создаются ежесменные учетные сообщения с информацией о выработанных пиломатериалах по признакам древесной породы, назначения, характера обработки, сорта, длины, толщины и ширины пиломатериала (или с меньшим набором признаков). Чаще всего учетное сообщение строится по схеме

ПП;I;e;DD;MM;YYYY;Num;M;p;α;γ;β;l;a;b;V;r;P \hspace{1cm} (1.2)

Параметры, содержащиеся в учетном сообщении (1.2), позволяют предварительно оценить доски-полуфабрикаты, произведенные бригадой или сменой цеха, в оптовых ценах.

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:

- максимальное - 27760320000;
среднее – 2799360.

Размер файла БД при среднем количестве записей будет равен 134369280 байт.

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):
- ПП;[М;][п;][α;];[γ;];[β;];[l;][а;];[b;]DD;MM;YYYY;
- e;[М;][п;][α;];[γ;];[β;];[l;][а;];[b;]DD;MM;YYYY;
- I;[М;][п;][α;];[γ;];[β;];[l;][а;];[b;]DD;MM;YYYY;
- M;[п;][α;];[γ;];[β;];[l;][а;];[b;]DD;MM;YYYY.

Также к рассматриваемой таблице БД будут выполняться статистические запросы на подсчет количества записей, например, по комбинациям полей ПП;MM;YYYY и e;MM;YYYY.

Последующая автоматизированная обработка сообщений (1.1) и (1.2) обеспечивает проведение анализа эффективности применяемой технологии лесопильения.

Специальные учетные сообщения полезно создавать на участке формирования технологических пакетов, на торцово-маркировочной установке, на участке сортировки досок по длинам и укладки их в транспортные пакеты, а также и на других технологических участках выработки пиломатериалов.

Рассмотрим практику фиксации данных о двух вспомогательных процессах лесопильного производства - окорке пиловочного сырья и сушке пиломатериалов.

Подачу бревен (в штук и кубических метрах) для окорки регистрируют в сменных рапортах за смену, отработанную бригадой, по древесным породам, длинам и диаметрам бревна. На основе данных в сменных рапортах формируют учетные сообщения вида

ПП;I;e;DD;MM;YYYY;Num;п;I;д;тПР;ПпР;н;Q (1.3)
Путем осуществления запросов к таблице записей данного вида будут получены ведомости распределения количества окоренных бревен определенных пород за сутки, декаду, месяц по длинам и диаметрам (штуки, кубические метры), а также другие группировки, необходимые для текущего контроля за уровнем выполнения заданий на окорку и для начисления заработной платы членам бригад, обслуживающих окорочные агрегаты.

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:
- максимальное – 22680000;
- среднее – 51840.

Размер файла БД при среднем количестве записей будет равен 1555200 байт.

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):
- ПП;[p;][l;][d;]DD;MM;YYYY;
- e;[p;][l;][d;]DD;MM;YYYY;
- l;[d;]DD;MM;YYYY;
- d;DD;MM;YYYY;
- t_ПР;П_ПР;ПП;[e;][l;]DD;MM;YYYY.

Также к рассматриваемой таблице БД будут выполняться статистические запросы на подсчет количества записей, например, по комбинациям полей ПП;ММ;YYYY и е;ММ;YYYY.

Данные, фиксируемые в регистрах первичного учета сушики пиломатериалов, используют для формирования сообщений вида

I;e;DD;MM;YYYY;Num;S;s;M;p;l;a;b;n;g;J;т_Б;т_ПР;П_ПР;Q (1.4)

В сообщениях (1.4) содержатся основные сведения, необходимые для технологической характеристики сушильных штабелей, процесса камерной сушики, объема высушенных пиломатериалов, использования сушильной камеры, а также для расчетов с обслуживающим персоналом. Автоматизация
обработки информации, включаемой в эти сообщения, заметно повышает уровень оперативного анализа работы сушильного цеха за любые отрезки времени.

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:
- максимальное – 181440000;
- среднее – 1166400.

Размер файла БД при среднем количестве записей будет равен 47822400 байт.

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):
- s;[M;][p;][l;][a;][b;][g;][J;]DD;MM;YYYY;
- S;[M;][p;][l;][a;][b;][g;][J;]DD;MM;YYYY;
- e;[M;][S;][p;][l;][a;][b;]DD;MM;YYYY;
- p;[M;][l;][a;][b;][g;]DD;MM;YYYY;
- a;[M;][l;][b;][g;]DD;MM;YYYY;
- b;[M;][l;][g;]DD;MM;YYYY;
- t_ПР;П_ПР;[S;]DD;MM;YYYY.

КИС лесопильного производства должна путем обработки первичных данных (записей БД) предоставлять следующую обобщенную информацию:
- натуральные и ценностные показатели переработки сырьевых материалов;
- показатели, характеризующие использование оборудования в связи с применяемыми технологиями производства пиломатериалов;
- информацию о выработанных пиломатериалах по признакам древесной породы, назначения, характера обработки, сорта и размера;

1.2.7. Фанерное производство

Технология и организация фанерного производства изложена в [78].
Рассмотрим особенности регистрации выработки фанеры по процессам раскроя чуроков на шпон, сушки шпона, склеивания фанеры.

Работа лущильного отделения характеризуется количеством израсходованного фанерного сырья данной древесной породы и налущенного сырого полноформатного шпона ($V_{\text{СПШ}}$), деловых кусков ($V_{\text{СКШ}}$) и малоформатного шпона из карандашей ($V_{\text{СМШ}}$). Согласно записям в журнале учета формируют ежесменное учетное сообщение вида

$$\text{ПП};e;DD;MM;YYYY;\text{Num};p;\beta;l;a;b;Q;V_{\text{СПШ}};V_{\text{СКШ}};V_{\text{СМШ}}$$

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:

- максимальное – 45360;
- среднее – 12960.

Размер файла БД при среднем количестве записей будет равен 492480 байт.

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

- $e;[p;][\beta;][l;][a;][b;]DD;MM;YYYY$;
- $\text{ПП;}[p;][\beta;][l;][a;][b;]DD;MM;YYYY$;
- $p;[\beta;][l;][a;][b;]DD;MM;YYYY$;
- $\beta;[p;][l;][a;][b;]DD;MM;YYYY$.

В сушильном отделении по каждой смене фиксируют количество просушенного шпона ($V_{\text{ШШ}}$) и переданного сухого шпона (полного формата ($V_{\text{СПШ}}$), кусков ($V_{\text{СКШ}}$), малых форматов ($V_{\text{СМШ}}$)). На основе этих записей создаются учетные сообщения вида

$$\text{С};e;DD;MM;YYYY;\text{Num};p;\beta;V_{\text{ШШ}};V_{\text{СПШ}};V_{\text{СКШ}};V_{\text{СМШ}}$$

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:

- максимальное – 120960;
- среднее – 12960.

Размер файла БД при среднем количестве записей будет равен 505440 байт.
Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

- \(e;[p;][\beta;]DD;MM;YYYY\);
- \(S;[p;][\beta;]DD;MM;YYYY\);
- \(p;[\beta;]DD;MM;YYYY\);
- \(\beta;DD;MM;YYYY\).

Клеильному отделению принадлежит наибольшее количество фиксируемых показателей фанерного производства. В учетных сообщениях, формируемых на этом участке согласно журналам учета клейки фанеры, фигурируют данные о каждой запрессовке, произведенной клеильными прессами отделения. Структура сообщения о клейке имеет вид

\[I;e;A;DD;MM;YYYY;Num;Ф;\beta;Е;Ш;I;а;b;0C_{ПЛП};P_{ATМ};l_{Ф};V\]
(1.7)

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:

- максимальное – 680400000;
- среднее – 2099520.

Размер файла БД при среднем количестве записей будет равен 100776960 байт.

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

- \(e;[A;][\Phi;][E;][Ш;][p;][\beta;][I;][a;][b;]DD;MM;YYYY\);
- \(A;[\Phi;][E;][Ш;][p;][\beta;][I;][a;][b;]DD;MM;YYYY\);
- \(\Phi;[E;][Ш;][p;][\beta;][I;][a;][b;]DD;MM;YYYY\);
- \(p;[E;][Ш;][\beta;][I;][a;][b;]DD;MM;YYYY\);
- \(\beta;[E;][Ш;][I;][a;][b;]DD;MM;YYYY\);
- \(l;а;b;DD;MM;YYYY\).

Также к рассматриваемой таблице БД будут выполняться статистические запросы на подсчет количества записей, например, по комбинациям полей \(e;MM;YYYY\) и \(A;MM;YYYY\).
1.2.8. Производство древесных плит

Технология и организация производства древесных плит подробно изложена в [75-77].

Формирование учетных сообщений об изготовлении древесностружечных и древесноволокнистых плит основано на ежесменной регистрации данных об этих процессах в журналах учета.

При производстве древесноволокнистых плит регистрируют следующие показатели:

1. Остатки технологической щепы в бункерах (\(Q_{\text{БУН}}\)) и древесной массы в бассейнах (\(Q_{\text{БАС}}\)), расход щепы на отлив плит (\(Q_{\text{РАС}}\)), выработку щепы (\(Q_{\text{ВЫР}}\)).

Данные учетные сообщения имеют вид

\[
\text{ПП;I;e;DD;MM;YYYY;Num;Q_{\text{БУН}};Q_{\text{БАС}};Q_{\text{РАС}};Q_{\text{ВЫР}} (1.8)}
\]

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:

- максимальное – 6480;
- среднее – 6480.

Размер файла БД при среднем количестве записей будет равен 239760 байт.

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

- e;DD;MM;YYYY;
- ПП;DD;MM;YYYY.

2. Количество отпрессованных (отлитых) (\(V_{\text{ОТЛ}}\)), обрезанных и сданных на склад годных (\(V_{\text{ОБ ГОД}}\)) и забракованных плит (\(V_{\text{ОБ БР}}\)) (по каждой их разновидности).

Данные учетные сообщения имеют вид

\[
\text{ПП;I;e;DD;MM;YYYY;Num;B;V_{\text{ОТЛ}};V_{\text{ОБ ГОД}};V_{\text{ОБ БР}} (1.9)}
\]
Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:
- максимальное – 32400;
- среднее – 12960.

Размер файла БД при среднем количестве записей будет равен 349920 байт.
Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):
- e;[B;]DD;MM;YYYY;
- ПП;[B;]DD;MM;YYYY;
- B;[ПП;][e;]DD;MM;YYYY.

3. Данные о нормированном (Q\textsubscript{НОРМ}) и фактическом (Q\textsubscript{ФАКТ}) расходах химикатов (по видам) на выработку плит (по их разновидностям), о числе варок и количестве сваренной эмульсии (V), о фактическом расходе данного химиката на выпуск изделий и об отклонениях от норм расхода.

Данные учетные сообщения имеют вид

\begin{center}
ПП;1;e;DD;MM;YYYY;Num;B;N;V;Q\textsubscript{НОРМ};Q\textsubscript{ФАКТ};±D \quad (1.10)
\end{center}

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:
- максимальное – 32400;
- среднее – 12960.

Размер файла БД при среднем количестве записей будет равен 518400 байт.
Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):
- e;[B;]DD;MM;YYYY;
- ПП;[B;]DD;MM;YYYY;
- B;[ПП;][e;]DD;MM;YYYY.

В производстве древесностружечных плит формируют аналогичные учетные сообщения.
1.2.9. Мебельное производство

Технология и организация мебельного производства изложена в [79-81].

Учет процесса изготовления мебели сопровождается составлением большого количества учетных сообщений, фиксируемых в БД.

Рассмотрим сообщения, несущие информацию об изготовлении деталей из ДСП при производстве корпусной мебели. Исходными данными для ввода записей в БД являются маршрутные листы, заполняемые исполнителями последовательных операций изготовления деталей. Данные сообщения имеют следующую постоянную структуру:

ПП;I;e;DD;MM;YYYY;Num;B;Bдет;l;a;b;V_1;…;V_n \ (1.11)
где n – количество этапов обработки деталей.

Расчетное количество записей этого типа, накапливаемое в БД за год, составляет:

− максимальное – 5832000;
− среднее – 259200.

Размер файла БД при среднем количестве записей будет равен 8035200 байт.

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

− e;[B;][B_дет;][V_1;][…][V_n;]DD;MM;YYYY;
− ПП;[e;][B;][B_дет;][V_1;][…][V_n;]DD;MM;YYYY;
− B_дет;[B;][V_1;][…][V_n;][ПП;][e;]DD;MM;YYYY;
− B;[ПП;][e;]DD;MM;YYYY.

Сообщения о плановых величинах по различным стадиям производства имеют сходную структуру и хранятся в отдельной таблице плановых показателей.

Путем осуществления запросов к таблице учетных сообщений и плановых величин в рамках АСУ мебельного производства будут получены следующие расчетные данные по различным стадиям производства:
– трудовые издержки производственных рабочих по нормам и по факту, в трудочасах и денежном выражении;
– показатели выполнения плана производства;
– расходы на содержание и эксплуатацию оборудования по сметным ставкам, установленным на изделие того или иного артикула, и фактические.

1.2.10. Вспомогательные подразделения

Отпуск однородной продукции вспомогательных подразделений внутрizonдукционным потребителям по планово-расчетной оценке, отражается учетными сообщениями типа

\[\xi;DD;MM;YYYY;Num;B;\xi';V:r:P \]

где \(\xi' \) - структурное подразделение - потребитель услуг.

Наиболее частыми запросами к данной таблице БД будут являться запросы по следующим полям (комбинациям полей):

– \(\xi;[B;][\xi';]DD;MM;YYYY; \)
– \(B;[\xi';]DD;MM;YYYY; \)
– \(\xi';[B;]DD;MM;YYYY. \)

1.3. Методы доступа к БД информационной системы управления лесопромышленного предприятия

В работах [130, 132] был проведен анализ существующих в настоящее время методов доступа к данным и файлов различных структур данных. На основе проведенного анализа метод индексирования (метод плотных вторичных комбинированных индексов) был представлен в качестве наиболее эффективного метода организации доступа к данным БД КИС лесопромышленного предприятия. Основные показатели эффективности применения данного метода отражены в [130].
В [132] автором предлагается и обосновывается повышение эффективности метода индексирования за счет модернизации алгоритма построения индекса [131] с учетом специфики информационной модели БД лесопромышленного предприятия и за счет сжатого хранения указателей на странице с записями. Предлагаемый метод индексирования получил название усовершенствованного метода комбинированных индексов. Автором доказывается, что усовершенствованный метод комбинированных индексов при построении информационной модели БД лесопромышленного предприятия имеет следующие преимущества перед стандартным методом индексирования:

– Возможность применения при запросах по любой комбинации индексированных полей.

– Меньший размер индексного файла по сравнению с размером стандартного индекса вследствие сжатого хранения комбинаций значений индексируемых полей и указателей в файле индекса.

– Возможность осуществления статистических запросов (подсчета количества записей, удовлетворяющих определенному поисковому критерию) без запроса к таблице данных, что позволяет значительно сократить время запроса.

– Возможность удаления индексированных полей из таблицы данных без потери информации. Это приведет к снижению размера БД.

– В случае осуществления только статистических запросов к БД таблица данных может быть полностью удалена, что значительно сократит размер БД.

Таким образом, в качестве основного метода доступа к файлам БД КИС лесопромышленного предприятия предлагается использовать усовершенствованный метод комбинированных индексов.
1.4. Выводы

По результатам анализа структуры КИС и размера файлов БД можно сделать следующие выводы о свойствах информационной модели КИС лесопромышленного предприятия:

1. Большой размер файлов БД КИС, объемы и широкий перечень элементов записей (полей) требуют детального анализа структуры хранения данных в БД КИС и оптимизации структуры файлов БД для обеспечения производительности системы.

2. Большинство запросов к БД КИС осуществляется по комбинациям полей (4-6 и более полей).

3. Статистические запросы к БД по подсчету количества записей, удовлетворяющих критериям поиска, также осуществляются по комбинациям из нескольких полей.

4. Наиболее эффективным методом доступа к файлам БД КИС лесопромышленного предприятия является усовершенствованный метод комбинированных индексов.

5. В целях снижения затрат, при создании КИС лесопромышленного предприятия, следует стремиться к использованию такого модульного состава ИО КИС, который позволит предприятию самостоятельно осуществлять настройки КИС, и адаптировать систему под конкретные технологические, отраслевые и иные особенности каждого лесопромышленного предприятия.

Таким образом, будем считать сделанные выводы основными критериями для выбора средства реализации КИС лесопромышленного предприятия в рамках главы 2.
2. СПЕЦИФИКА СРЕДЫ РЕАЛИЗАЦИИ ИНФОРМАЦИОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

При выборе средств реализации КИС лесопромышленного предприятия на основании выводов, сделанных в главе 1, следует руководствоваться следующими критериями:

1. Уровень СУБД (ядро системы):
 - Структура данных СУБД должна предусматривать возможность проектирования многоуровневых структур данных, что является необходимым для учета специфики информационной модели БД КИС лесопромышленного предприятия.
 - Структура хранения данных должна обеспечивать возможность использования инвертированных списков и хранения инвертированных структур.
 - Методы доступа к данным СУБД должны обладать мощным инструментарием поиска, чтения и селекции данных; производительными методами осуществления запросов к данным по нескольким критериям (комбинациям из нескольких полей), в том числе, к инвертированным спискам и инвертированным структурам.
 - Целостность данных СУБД.

2. Модульный уровень системы (программы взаимодействия с ядром системы, основные расчетные программы, пользовательские приложения, отчетные формы):
 - Инструментарий для создания экономико-математических моделей и расчетов, а также, интерпретации данных в рамках программных модулей КИС.
 - Наличие эффективных средств взаимодействия приложений системы с БД КИС, механизмов передачи данных из БД в расчетные модули и обратно.
– Возможность осуществления настройки системы и адаптации КИС к конкретным особенностям (технологическим, организационным и пр.) лесопромышленного предприятия.
– Возможность представления средств управления и настройки системы, а также, отчетных форм в графической, понятной пользователю, форме.
3. Уровень аппаратного обеспечения и корпоративной сети:
– Возможность реализации КИС на различных аппаратных платформах.
– Возможность функционирования КИС в условиях распределенной среды.
4. Оптимальная стоимость ПО среды проектирования и эксплуатации.
Был проведен анализ существующих СУБД и редакторов приложений на соответствие вышеуказанным критериям. На основе анализа были сделаны выводы, что наиболее полно отражающей свойства информационной модели лесопромышленного предприятия средой построения КИС является СУБД ADABAS и редактор Natural.
Далее приведены характеристики среды выбранной среды проектирования и эксплуатации КИС лесопромышленного предприятия.

2.1. Специфика СУБД ADABAS

Как было отмечено в главе 1, при построении КИС лесопромышленного предприятия неизбежно хранение и обработка больших объемов данных. Кроме того, для моделирования сложной структуры информационной модели лесопромышленного предприятия необходимо учесть ряд требований к СУБД.
Современное состояние науки о базах данных, в том числе особенности архитектуры и методы доступа к данным, рассмотрено в [45, 133-149].
Производительность КИС лесопромышленного предприятия во многом зависит от средств и возможностей СУБД, при помощи средств которой строится ядро системы.
1. Модель и структура данных СУБД.
2. Структура хранения данных СУБД.
3. Методы доступа к данным СУБД.
4. Ограничения целостности.

2.1.1. Модель и структура данных

Подробно модели и структуры данных различных СУБД изложены в работах [45, 150-157]. База данных ADABAS определяется как совокупность взаимосвязанных файлов и ассоциаций записей файлов.

Файл представляет собой именованную совокупность записей, имеющих одинаковую структуру, компонентами которой являются:

- атрибут и множественный атрибут;
- простая, составная и повторяющаяся группа.

Каждой записи файла назначается системный ключ, представляющий собой число в диапазоне от 1 до 16 * 106, которое однозначно идентифицирует экземпляр записи и определяется как внутрисистемный номер. Связи между файлами (1:1; 1:M; М:N) являются непоименованными парными связями и предназначены для моделирования сетевых и иерархических отношений между объектами предметной области, а также групповых отношений в объектах иерархической структуры.

Ассоциация записей файлов (далее ассоциация) представляет собой совокупность записей файла, обладающих общим свойством. Ассоциации организуются в БД в виде списков внутрисистемных номеров (ВСН) записей файлов. Если ассоциация образуется на основе равенства значений некоторого атрибута, список ВСН записей, входящих в ассоциацию, называется инвертированным списком, а сам атрибут — поисковым. В том случае, когда ассоциация образуется на основе равенства значений атрибута записей одного файла, значению атрибута некоторой записи другого файла, соответствующий список ВСН называется списком связи, а указанные атрибуты файлов - атрибутами связи.
Использование ассоциаций реализует, по существу, разбиение записей файлов на классы, поддерживаемое динамически в процессе модификации БД. При этом ассоциации в виде инвертированных списков обеспечивают возможность ускоренной селекции записей файлов по их содержимому, а ассоциации в виде списков свяzu - возможность поддержания связей между файлами и возможность селекции записей с применением этих связей.

Атрибут является наименьшей именованной единицей данных, каждый экземпляр которой в записи файла представляется одним или несколькими значениями.

Для атрибута в схеме файла задаются его короткое двухсимвольное имя, тип и максимальная длина значения.

Тип значения атрибута определяет стандартный вид представления значения этого атрибута в прикладной программе. К числу допустимых типов значений относится символьный, упакованный и распакованный десятичный, битовый и двоичный.

Атрибут в схеме файла может быть описан как уникальный, при этом его значения однозначно определяют экземпляры записей в файле БД и могут быть использованы в качестве ключей записей.

Группа представляет собой именованную совокупность атрибутов и, возможно, других групп.

Простая группа состоит только из атрибутов, составная группа может содержать как атрибуты, так и простые и составные группы.

Периодической называется группа, которая может иметь в записи несколько экземпляров. Периодические группы в структуре файла не должны быть вложенными, т. е. не должны входить в состав других групп. Простые и составные группы могут быть иерархически подчинены одна другой и могут входить в состав повторяющихся групп, образуя древовидную структуру.
Периодическая группа является средством реализации связи типа 1:M в пределах записи. Пример использования периодической группы в составе структуры файла СОТРУДНИКИ представлен на рис. 2.1.

Рис. 2.1. Записи файла СОТРУДНИКИ с периодической группой

СЛУЖЕБНЫЕ ДАННЫЕ

Согласно рис. 2.1, у работника одного предприятия с продвижением по службе могут быть зафиксированы несколько должностей, с указанием размера оклада и даты назначения на соответствующий пост.

Ассоциации записей файла в БД организуются в виде инвертированных списков по значениям поисковых атрибутов и в виде списков связи - по значениям атрибутов связи.

Ассоциации, организованные по значениям производных атрибутов, расширяют возможности динамической классификации записей файла, позволяя моделировать классификацию объектов предметной области не только по их свойствам, но и по комбинации свойств, что увеличивает производительность системы при осуществлении поиска по нескольким критериям.

Ассоциации записей файлов БД, реализованные посредством инвертированных списков и списков связи, автоматически создаются и корректируются при вводе, корректировке и удалении записей файлов, содержащих значения поисковых атрибутов, атрибутов связи и значения атрибутов, входящих в состав значений производных атрибутов.

Пример организации инвертированных списков иллюстрируется рис. 2.2. Каждая запись представлена с ее внутрисистемным номером, который не входит в состав структуры записи. Поисковым в схеме файла КАДРЫ
являются атрибуты ГОД-РОЖДЕНИЯ и ПОЛ с кодами имен соответственно GR и PL. Файл КАДРЫ первоначально содержит восемь записей. По значениям поискового атрибута ГОД-РОЖДЕНИЯ для представленных записей организовано три инвертированных списка, по значениям поискового атрибута ПОЛ - два.

<table>
<thead>
<tr>
<th>ВСН</th>
<th>Записи файла КАДРЫ</th>
<th>Индексные таблицы</th>
<th>Инвертированные списки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FM</td>
<td>GR</td>
<td>PL</td>
</tr>
<tr>
<td>35</td>
<td>Николаев</td>
<td>1941</td>
<td>муж</td>
</tr>
<tr>
<td>36</td>
<td>Петрова</td>
<td>1953</td>
<td>жен</td>
</tr>
<tr>
<td>37</td>
<td>Гринько</td>
<td>1948</td>
<td>жен</td>
</tr>
<tr>
<td>40</td>
<td>Рыжов</td>
<td>1941</td>
<td>муж</td>
</tr>
<tr>
<td>41</td>
<td>Туров</td>
<td>1953</td>
<td>муж</td>
</tr>
<tr>
<td>42</td>
<td>Белов</td>
<td>1948</td>
<td>муж</td>
</tr>
<tr>
<td>43</td>
<td>Кравченко</td>
<td>1953</td>
<td>муж</td>
</tr>
<tr>
<td>45</td>
<td>Тарасов</td>
<td>1953</td>
<td>муж</td>
</tr>
</tbody>
</table>

Рис. 2.2. Записи файла и инвертированные списки до модификации файла

Рассмотрим далее организацию связей между записями файлов БД. Между любыми двумя файлами БД возможна организация одного типа связи, причем каждый файл может быть связан с несколькими другими файлами.

Запись любого файлов объявляется связанной с одной или несколькими записями второго файла, если атрибут связи в каждой из этих записей имеет значение, совпадающее со значением атрибута связи в записи первого файла. Атрибуты связи в каждом из связываемых файлов должны быть поисковыми (объявленными дескрипторами), поскольку формирование списков связи
осуществляется с помощью инвертированных списков, которые до связывания должны быть организованы по каждому из этих атрибутов. Для организации связи типа один-к-одному в качестве атрибутов связи в каждом из файлов должны быть объявлены уникальные атрибуты. Связь типа один-ко-многим и типа многие-к-одному будет организована, если только один из атрибутов связи будет уникальным, а второй - простым атрибутом.

2.1.2. Структура хранения данных

Существующие структуры хранения данных рассмотрены в [45, 158-162].

База данных ADABAS размещается на устройствах прямого доступа. Записи БД запоминаются в блоках устройств прямого доступа. Размер блока выбирается с учетом условия эффективного размещения целого числа блоков на дорожке используемых типов устройств прямого доступа.

Размещение записей в блоке обеспечивает более эффективное использование внешней памяти.

Структурными элементами базы данных ADABAS на внутреннем уровне являются: накопитель, ассоциатор, рабочий набор и вспомогательные наборы данных. Накопитель, ассоциатор и рабочий набор размещаются в наборах данных ОС ЕС, которые имеют прямую организацию и могут быть мно
gоточными.

Структура накопителя. Накопитель, который занимает не более пяти наборов данных, предназначен для хранения записей файла БД. Каждому файлу выделяется до пяти экстентов, размещение которых отмечается в таблице размещения файла (ТРФ), находящейся в ассоциаторе.

Размер блока зависит от типа устройства внешней памяти. Блок набора данных накопителя состоит из поля длины, содержащего общую длину занятой части блока, и записи файла. Размер записи не должен превышать размера блока. В блоке может находиться несколько записей.
Запись содержит поле длины и поле ВСН (ISN), за которыми следуют значения атрибутов. ВСН является уникальным ключом записи. Физический адрес блока, в котором находится запись с данными ВСН, определяется посредством преобразователя адреса, размещенного в ассоциаторе.

Значения множественного атрибута хранятся как последовательность значений с указателем длины и предшествующим однобайтовым счетчиком числа экземпляров. Периодическая группа начинается с однобайтового счетчика, указывающего самый большой номер из хранимых в группе экземпляров.

На рис. 2.3. представлена структура записи файла СТУДЕНТ для следующей карточки студента:

НОМЕР КАРТОЧКИ	115573
ФАМИЛИЯ	Ухов
ИМЯ-ОТЧЕСТВО	Петр Иванович
УЧЕБНАЯ ГРУППА	241
СЕССИЯ	1
ЭКЗАМЕНЫ	математика, физика, электротехника
ОЦЕНКИ	5, 4, 4
СЕССИЯ	2
ЭКЗАМЕНЫ	математика, физика, электротехника
ОТМЕТКИ	4, 4, 5

Рис. 2.3. Структура записи файла СТУДЕНТ

Поля записи (для удобства они пронумерованы) содержат:

1 - общую длину записи;
2 - ВСН;
3, 5, 7, 11, 13, 2, 19, 21, 23, 25, 27, 29, 31, 34, 36, 38, 40, 42, 44 - длину значений атрибутов;
4, 6, 8, 9, 12, 14, 17, 20, 22, 24, 26, 28, 30, 32, 35, 37, 39, 41, 43, 45 - значения атрибутов;
10, 18, 33 — счетчики экземпляров множественного атрибута;
15 - счетчик экземпляров повторяющейся группы.

Структура ассоциатора. Ассоциатор содержит сведения о структуре данных концептуального и внутреннего уровней БД в виде таблиц, списков и т. д., помещенных в блоки, и служит для взаимного отображения этих структур и выполнения операций над ними.

Таблицы и списки ассоциатора формируются при создании и ведении БД с помощью словаря данных и модифицируются системой во время ее функционирования. Основная информация о размещении БД сосредоточена в таблице распределения памяти (ТРП).

ТРП занимает один блок ассоциатора и имеет постоянный адрес. Она содержит:

− имя и номер БД;
− максимальное число файлов, которые могут быть загружены в БД;
− число загруженных файлов;
− номера системных файлов;
− адреса экстентов, выделенных для ассоциатора, накопителя, рабочего набора;
− типы устройств, на которых они размещены, неиспользованные области памяти и т. д.

Данные о размещении файла в БД содержат таблице размещения файла (ТРФ). Каждому файлу соответствует своя ТРФ, которая занимает один блок ассоциатора. Ее местоположение в ассоциаторе определяется номером файла.

ТРФ составляется средствами АБД во время создания файла БД. В ней содержатся:
− имя файла;
− номер файла;
− имя атрибута рандомизированного доступа;
− загрузочная схема связей файлов;
− коэффициент заполнения блоков файла в накопителе;
− коэффициент заполнения блоков инвертированных списков в ассоциаторе;
− сведения о размещении файла в накопителе, инвертированных списков и их индексов в ассоциаторе, преобразователя ВСН записей в адрес блока файла, таблицы учета свободной памяти в блоках накопителя и т. д.

Описание логической структуры файла транслируется в таблицу определения данных (таблица FDT), которая представляет собой загрузочную форму схемы файла.

Таблица FDT для каждого файла имеет фиксированный адрес и занимает 4 блока ассоциатора, поля этой таблицы содержат признаки свойств каждого атрибута файла.

Ряд операций, инициируемых командами ЯМД, выполняется с помощью инвертированных списков, состоящих из ВСН записей файла.

Инвертированные списки хранятся в блоке набора данных ассоциатора совместно с заголовочной частью, состоящей из значения атрибута, которому соответствует список, длины этого значения и длины инвертированного списка. В одном блоке размещается несколько списков, но все они должны соответствовать значениям одного атрибута. Список отсортирован в порядке возрастания значений ВСН, поэтому первый ВСН оказывается младшим элементом списка.

Доступ к требуемому инвертированному списку осуществляется с помощью многоуровневого индекса, содержащего индекс значений и старшие индексы (рис. 2.4.).
Индекс значения состоит из записей, каждая из которых включает длину атрибута, его значение, первый ВСН списка и адрес блока инвертированных списков. Значение атрибута то же, что и в первом инвертированном списке адресованного блока, а ВСН является младшим в этом списке и указывает на то, что список не имеет продолжения. Таких записей в индексе значений будет столько, сколько блоков занимают инвертированные списки данного атрибута. Запись индекса значения, указывающая на блок с инвертированным списком, начало которого находится в предыдущем блоке, вместо младшего ВСН-списка этого блока содержит 0. Записи индекса значения, относящиеся к определенному атрибуту, объединяются в блоки. В блоке может находиться только целое число записей. Способ выделения новых блоков тот же, что и для инвертированных списков.

<table>
<thead>
<tr>
<th>Старшие индексы</th>
<th>Индекс значений</th>
<th>Блоки инвертированных списков</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD ЯСНЕВО 18</td>
<td>IM АЛЕКСЕЙ 5 1</td>
<td>АНТОШИН 3 1,4,15,16,АРКАНОВ 7,29,30,44,46,47,91,117</td>
</tr>
<tr>
<td>IM АЛЕКСЕЙ 30</td>
<td>FM АНТОШИН 1 51</td>
<td>ИВАНОВ 0 90</td>
</tr>
<tr>
<td>VO 18 31</td>
<td>FM ХАБИНЦЕВ 11 54</td>
<td>КОСТИН 33 95</td>
</tr>
<tr>
<td>VO 18 0 83</td>
<td>ХАБИНЦЕВ 11 100</td>
<td>ИВАНОВ 4 19,21,41,42</td>
</tr>
<tr>
<td>VO 70 134 84</td>
<td>ХЛЫСТОВ 3 111</td>
<td>ЙКОВЛЕВ 79 118</td>
</tr>
<tr>
<td>ЯКОВЛЕВ 5 14,16,18,56,58</td>
<td>ИВАНОВ 5 59,65,70,71,74</td>
<td></td>
</tr>
<tr>
<td>ХЛЫСТОВ 5 3,11,13,22,51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис 2.4. Инвертированные структуры

Нужный блок индекса значения, относящегося к данному атрибуту, отыскивается посредством старшего индекса. Блок старшего индекса состоит из записей. Каждая запись адресует один блок индекса значений. Запись включает код имени атрибута, поле признаков атрибута, длину значений атрибута, ВСН и адрес блока индекса значения. На все поисковые атрибуты заведены записи в старшем индексе. Поисковые атрибуты, не имеющие значений в записях файла,
представлены в записях старшего индекса нулевыми значениями полей длины, ВСН и адреса блока индекса значений. В поле признаков атрибута указываются характеристики атрибута: формат хранения, принадлежность к повторяющейся группе, признак множественного атрибута.

Каждая запись содержит указатель на один блок индекса значений. Количество блоков старшего индекса зависит от количества блоков индекса значений и, в конечном счете - от объема БД. В случае если количество блоков старшего индекса больше одного, то для поиска требуемого блока старшего индекса создается блок старшего индекса следующего уровня иерархии такой же структуры и т. д. Адрес самого верхнего уровня индекса для данного файла указывается в таблице размещения файла.

Связь ВСН записи с номером блока в накопителе, в котором находится эта запись, осуществляется посредством преобразователя адреса, который представляет собой таблицу, состоящую из трехбайтовых элементов. Элемент, относительный номер которого равен значению ВСН, содержит номер блока накопителя, в котором находится запись с этим ВСН. Размер таблицы определяется максимальным значением ВСН в данном файле, который задается как параметр при создании этого файла.

Схематически связь ВСН с блоками накопителя посредством преобразователя адреса показана на рис. 2.5.

Структура рабочего и вспомогательных наборов данных. Рабочий набор данных занимает один экстент памяти и состоит из блоков фиксированной длины. Он предназначен для временного размещения промежуточной информации, необходимой в процессе работы с БД. В составе рабочего набора выделяется область оперативного журнала изменений, используемого для поддержания логической целостности БД, области промежуточных списков ВСН, а также области результирующих списков ВСН.
Рис. 2.5. Пример преобразования ВСН в адрес

Для работы ряда утилит предназначены вспомогательные наборы данных (набор для сортировки и временный набор данных). Эти наборы имеют прямую организацию с фиксированной длиной блока. Набор для сортировки используется при создании и модификации инвертированных списков. Временный набор данных применяется в качестве буферной памяти при загрузке БД для создания инвертированных списков. При функционировании системы эти наборы не используются.

2.1.3. Методы доступа к данным

Методы доступа к данным в существующих СУБД рассмотрены в [45, 150, 158-159, 161-165]. Операции доступа к данным СУБД ADABAS представлены операциями чтения и поиска записей файлов БД.

Операция чтения обеспечивает селекцию записи по ее позиции в файле или его части и выборку требуемых значений атрибутов, т.е. операция чтения эквивалентна последовательности операций селекции и выборки данных.

Операция поиска обеспечивает селекцию некоторой совокупности записей файла по значениям атрибутов этих записей или с учетом связей между файлами и, при необходимости, - выборку значений атрибутов из первой
отобранной записи. Частным случаем селекции по значениям атрибутов является рандомизированный доступ к записям файлов.

Чтение записей. В зависимости от вида упорядоченности множества записей операция чтения обеспечивает доступ к записям файла:
- по списку ВСН записей;
- в порядке возрастания ВСН записей файла;
- в логической последовательности по значениям заданного поискового атрибута;
- в физической последовательности расположения записей в БД.

Доступ к записи файла по списку ВСН осуществляется через системную таблицу, называемую преобразователем адреса. Преобразователь адреса организуется для каждого файла БД и отображает каждый ВСН в относительный номер блока набора данных, в котором размещается запись файла с этим ВСН.

При доступе к записям файла в порядке возрастания их ВСН возможно обращение к записи с минимальным ВСН, к записи с ВСН, ближайшим «большим» указанного, и обращение к записи со следующим (точнее, ближайшим — большим) ВСН независимо от физического размещения записей.

При доступе к записям в логической последовательности значений поискового атрибута в качестве упорядоченного множества, в котором производится селекция записей, выступает вся совокупность ассоциаций, построенных по значениям заданного поискового атрибута файла. Порядок в данном множестве определяется сортировкой полей индексных таблиц по значениям поисковых атрибутов и сортировкой каждого из инвертированных списков по значениям ВСН. В данном случае обеспечивается возможность обращения к первой записи (в смысле порядка, указанного выше), к конкретной записи и к следующей записи множества. Пример доступа к записям файла, логически упорядоченного по значениям
поискового атрибута, представлен на рис. 2.6. Селекция записей осуществляется с использованием инвертированных списков и позволяет просмотреть все записи ассоциаций записей, организованных по поисковому атрибуту OK, начиная с заданной записи.

Рис. 2.6. Доступ к записям файла в логической последовательности по значениям поискового атрибута ОКЛАД (код имени ОК)

Доступ к записям файла в порядке физического размещения записей в БД основан на последовательном считывании блоков физической памяти файла в порядке их расположения в наборе данных. При этом возможно чтение первой
записи первого физического блока файла, чтение записи в указанной части памяти файла и чтение записи, физически следующей за указанной.

Условие селекции

Оклад (OK) от 270 до 350 и Степень (ST) КТН или ДТН

<table>
<thead>
<tr>
<th>OK</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>… 240 270 300 350 400…</td>
<td>… КТН … ДТН …</td>
</tr>
</tbody>
</table>

17 31
15 27 35 47
18 19 21
15 24 27
18 25 26 31

ИЛИ

Список по 1-му простому условию

И

Результаты

Список по 2-му простому условию

Рис. 2.7. Ассоциативный поиск записей файла
Поиск записей файла. Поиск записей в ADABAS, основанный на использовании ассоциаций, представленных в виде инвертированных списков и списков связи, определяется как ассоциативный поиск.

Ассоциативный поиск обеспечивает возможность селекции записей файла БД по значениям атрибутов, а также селекцию записей файла с учетом их связей с записями другого файла.

На рис. 2.7. представлена схема ассоциативного поиска с использованием инвертированных списков. Условие поиска состоит из двух простых условий, одно из них задано диапазоном значений атрибутов, а другое — перечнем значений. Результирующий список, полученный как пересечение двух списков, сформированных по простым условиям, содержит четыре ВСН записей, удовлетворяющих условию поиска.

Если полагать, что чтение каждого инвертированного списка с учетом многоуровневости индексных таблиц требует в среднем четырех операций ввода-вывода, то практически независимо от количества записей файла БД ассоциативный поиск в данном случае потребует 20 операций ввода-вывода, что дает ощутимый выигрыш во времени по сравнению с методами использования цепочек и прямого просмотра файла БД.

При использовании инвертированных списков некоторая зависимость времени поиска от количества записей файла проявляется в больших БД, содержащих 10^5—10^6 записей, поскольку возникает необходимость обработки больших списков ВСН по частям.

На рис. 2.8. представлена схема ассоциативного поиска в связанных файлах. Составное условие поиска в примере на рис. 2.8. соответствует требованию найти в файле 1 все записи о студентах учебных групп 241 и 242, участвующих в семинарах преподавателей кафедры информационно-вычислительных систем (ИВС). Файл 1 объявлен как исходный, поэтому результат поиска в виде списка из трех ВСН записей относится к файлу СТУДЕНТ.
2.8. Ассоциативный поиск записей в связанных файлах

Возможности ассоциативного поиска в БД могут быть расширены благодаря использованию операций над ассоциациями записей файлов. Данные операции обеспечивают возможность логической обработки и сортировки списков ВСН записей файла, которые могут быть получены в результате ассоциативного поиска или сформированы программой пользователя.

Операции логической обработки используют в качестве операндов два списка ВСН записей, принадлежащих одному файлу. Допускается три вида логических операций - пересечение списков, их объединение и пересечение с отрицанием.
Сортировка списка ВСН может быть выполнена в порядке возрастания значений ВСН в списке, а также в порядке возрастания или убывания значений от одного до трех поисковых атрибутов записей файла, которые представлены своими ВСН в сортируемом списке.

2.1.4. Ограничения целостности

Ограничения целостности СУБД ADABAS подробно рассмотрены в [45]. Ограничения целостности модели данных концептуального уровня ADABAS могут быть разделены на синтаксические и семантические.

Статические синтаксические ограничения, определяющие возможности ADABAS по отображению структурных свойств объектов предметной области и отношений между ними в схеме БД, выраженные через максимально допустимые значения параметров ЯОД, приведены ниже:

<table>
<thead>
<tr>
<th>Ограничение</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число файлов в БД</td>
<td>255</td>
</tr>
<tr>
<td>Число записей файла</td>
<td>16,7*106</td>
</tr>
<tr>
<td>Число компонентов схемы файла</td>
<td>500</td>
</tr>
<tr>
<td>Число уровней в схеме файла</td>
<td>7</td>
</tr>
<tr>
<td>Число экземпляров повторяющейся группы</td>
<td>99</td>
</tr>
<tr>
<td>Число экземпляров множественного атрибута</td>
<td>191</td>
</tr>
<tr>
<td>Число поисковых атрибутов файла</td>
<td>200</td>
</tr>
<tr>
<td>Число элементов составного атрибута</td>
<td>5</td>
</tr>
<tr>
<td>Длина значения атрибута:</td>
<td></td>
</tr>
<tr>
<td>символного, байт</td>
<td>253</td>
</tr>
<tr>
<td>десятичного целого, разрядов</td>
<td>27</td>
</tr>
<tr>
<td>упакованного, байт</td>
<td>14</td>
</tr>
<tr>
<td>битового, байт</td>
<td>126</td>
</tr>
<tr>
<td>двоичного целого, байт</td>
<td>4</td>
</tr>
<tr>
<td>символного или битового поискового, байт</td>
<td>126</td>
</tr>
</tbody>
</table>
Динамическим синтаксическим ограничением целостности является запрет на использование в операции модификации более чем одной записи файла БД. Это ограничение минимизирует объем данных, передаваемых между прикладной программой и ADABAS в процессе ввода, корректировки или удаления записей файлов БД, что повышает динамичность работы ADABAS в режиме обслуживания многих пользователей.

Статические семантические ограничения целостности усиливают действие структурных ограничений, устанавливая дополнительные рамки на значения атрибутов в соответствии с семантикой моделируемых объектов предметной области и тем самым, ограничивая число возможных экземпляров объектов, представленных в БД. К данному виду ограничений можно отнести задание на ЯОД числа экземпляров множественного атрибута и периодических групп, а также задание длин значений атрибутов в пределах допустимых максимальных значений, определяемых структурными ограничениями. Возможность определения уникальных атрибутов в схеме файла также относится к числу статических семантических ограничений. Кроме того, статические семантические ограничения в ADABAS представлены возможностью контроля по словарю значений символьных атрибутов и контроля по диапазону значений для числовых атрибутов. Требование на указанные виды контроля определяется в словаре данных путем описания атрибутов, подлежащих контролю.

Динамические семантические ограничения, определяющие допустимые переходы БД из одного целостного состояния в другое в зависимости от свойств объектов предметной области, могут быть заданы путем использования специальных команд ЯМД. К таким командам относятся команды управления транзакциями, с помощью которых определяется допустимая
последовательность операций модификации данных, переводящая БД в новое целостное состояние.

2.2. Специфика среды проектирования приложений Natural

Чтобы быть способной реализовать программное и алгоритмическое наполнение программных модулей КИС лесопромышленного предприятия, а также осуществлять настройки программных модулей, среда разработки приложений должна обладать следующими возможностями:

1. Событийное программирование. Подразумевает выполнение определенной процедуры или подпрограммы на языке программирования среды разработки при совершении пользователем определенного действия, связанного с активными компонентами пользовательских приложений.

2. Функциональность расчетных операторов языка программирования среды разработки. Функциональность определяется наличием мощного языка программирования, включающего как операторы манипулирования массивами данных, так и ряд логических и математических функций.

3. Управление параметрами. Должна быть возможность исполнения различных программ на основе задаваемых параметров. Также должна быть предусмотрена процедура ввода и изменения значений параметров.

4. Иерархия приложений (приоритеты исполнения приложений и программ). Необходимо наличие средств назначения приоритетов перехода от приложения к приложению и порядка исполнения процедур различных приложений.

5. Возможность использования программ и запросов несколькими пользовательскими приложениями. В целях оптимизации расчетов должна обеспечиваться возможность вызова или исполнения каждой программы взаимодействия с БД, а также расчетной программы из любого из пользовательских приложений.
6. Стандартизация запросов и программ обработки. Для обеспечения доступа приложений к программам, необходимо каждый тип запроса к БД или расчета данных, сохраненного в виде стандартизированного файла.

Подробнее описание среды редактора приложений Natural представлено в [45, 53, 55-59, 62, 34].

2.2.1. SPoD - единая система разработки прикладных приложений

Учитывая вышеизложенные требования к среде разработки приложений, для реализации КИС лесопромышленного предприятия предлагается наряду с СУБД ADABAS использовать продукты той же фирмы-производителя, объединенные под названием SPoD.

SPoD (Single Point of Development) – единая среда для разработки прикладных приложений. Благодаря данной технологии возможно разрабатывать приложения для различных платформ (Windows, Unix, Mainframe), для различных СУБД (Adabas, Tamino, Oracle, DB2 и пр.), а также с использованием различных технологий (DCOM, SOAP, Web Services, и пр.)

Перечень программных средств SPoD для разработки прикладных приложений, а также взаимосвязи между ними показаны на рис. 2.9.

Рис. 2.9. Структура и взаимосвязи программных средств SPoD
SPoD удовлетворяет следующим требованиям и предлагает следующие преимущества:

- Клиент/сервер архитектуры, поддерживающий одну единственную удаленную среду разработки для всех платформ.
- Единый, знакомый образ всех объектов включаемых в прикладную разработку.
- Расширенная управляемая помощь/документация для дистанционных сред разработки.
- Увеличение производительности разработки через мощную графическую рабочую среду.
- Улучшение управления над заданиями разработки в Natural.
- Низкие издержки для разработки программного обеспечения, эксплуатации и администрирования.

Архитектура системы SpoD показана на рис. 2.10.
Основными компонентами SPoD являются:
- Natural для Windows, как клиент удаленной разработки;
- Natural Development Server – сервер разработки;
- Development Server File – файл хранения данных;
- Predict and Natural Construct – идентичность файла хранения данных.

Natural для Windows, как клиент удаленной разработки. Компонент Natural Studio является рабочей станцией центральной разработки для всех платформ. Все Natural-связанные прикладные разработки, такие как: администрирование, удаленное редактирование, компиляция, отладка, настройку конфигурации и т.д., осуществляются из среды Natural Studio, независимо от платформы, где находится серверная среда разработки. Дистанционная связь клиента разработки с Natural на серверной платформе осуществляется через Natural Development Server посредством протокола TCP/IP.

Natural Development Server – сервер разработки. Средством удаленной разработки на серверной платформе является Natural с добавленным компонентом Natural Development Server (NDV).

Удаленный сервер разработки обеспечивает следующие функции:
- предоставление доступа к системным файлам;
- предоставление доступа к прикладным данным;
- согласование модификаций прикладных объектов посредством блокировки с использованием удаленного файла сервера разработки;
- выполнение дистанционных команд, задаваемых клиентом разработки Natural Studio.

Development Server File – файл хранения данных. Development Server File предназначен для хранения прикладных данных. Его структура подобна структуре системного файла Natural FDIC.
Predict and Natural Construct – идентичность файла хранения данных.

В рамках SPoD также существует 2 дополнительных компонента: Predict - словарь данных и Natural Construct - генератор прикладных систем. В качестве файла сервера разработки может быть использован тот же самый файл, который используется в Predict и Natural Construct.

SPoD обладает следующими возможностями:

– Дистанционная обработка объекта. SPoD позволяет дистанционно манипулировать программными объектами, независимо от физического месторасположения.

– Дистанционное редактирование. SPoD позволяет извлекать исходные файлы из целевой среды, редактировать их на локальной рабочей станции, и затем сохранять их в целевой среде.

– Графический интерфейс пользователя. Все перечисленные редакторы работают в диалоговом режиме, что обеспечивает большие преимущества перед символьными редакторами.

– Дистанционная компиляция. Существует возможность запуска процесса компиляции с локальной рабочей станции в целевую среду.

– Дистанционная отладка ошибок. С помощью отладчика Natural Studio возможно устранить ошибки в приложениях, исполняемых как в целевой среде, так и на локальной рабочей станции.

– Блокировка объектов. Во время доступа к дистанционному серверу разработки, параллельные коррекции предотвращаются. При этом информация, вводимая при параллельной коррекции, держится в файле сервера разработки.

– Поддержка окна эмуляции терминалов. При эксплуатации универсальных приложений для испытания выхода на терминалы в Natural Studio предусмотрено окно эмуляции терминалов.

В рамках КИС лесопромышленного предприятия среда SPoD может выполнять следующие функции:

– Определение и генерация базы данных (ADABAS, и пр.).
− Разработка программ с использованием сервисов систем обработки транзакций (CICS, Complete).
− Генерация программ.
− Документирование приложений.
− Реинжениринг и поддержка работы приложений.
− Работа в среде Natural Studio с объектами информационной системы (очереди заданий, наборы данных и т.п.)

2.2.2. Средства взаимодействия приложений системы с СУБД ADABAS

Программы и алгоритмы взаимодействия с ядром системы КИС создаются посредством языка программирования среды разработки приложений.

Операторы языка среды разработки приложений взаимодействуют с утилитами СУБД, которые непосредственно выполняют поиск, чтение или выборку данных на основе задаваемых операторами критериев поиска. Широкий перечень функций, критериев и методов осуществления поиска, чтения, доступа и манипулирования данными операторами языка среды разработки за счет рационального их использования при построении запросов позволит сократить время на осуществление запросов и представление результатов в рамках пользовательского приложения.

Для обеспечения возможности использования преимуществ усовершенствованного метода комбинированных индексов, методов доступа и структур хранения данных вышеописанной СУБД при реализации КИС леспромышленного предприятия требуется следующий перечень функций взаимодействия с БД:
− считывание записи файла БД в физической последовательности;
− считывание записи файла БД в логической последовательности;
− считывание значения поля БД;
− считывание записи с заданным последовательным внутренним системным номером записи в файле (ВСН);
– выборка набора записей из БД по критерию поиска, состоящему из полей, определенных как дескрипторы;
– добавление новой записи в файл БД;
– обновление записи в файле БД;
– удаление записи из файла БД;
– чтение данных транзакции, сохраненных предыдущим оператором;
– повторное чтение записи, обрабатываемой в настоящее время;
– задание и проверка пароля доступа пользователя к защищенному файлу;
– повторная попытка чтения записи, задержанной другим пользователем;
– выполнение обработки прерывания.

Кроме того, помимо вышеперечисленных функций взаимодействия с БД, необходим ряд логических и математических функций.

Используемый в SPoD, язык программирования содержит набор операторов, выполняющих все перечисленные функции взаимодействия, а также необходимый перечень операторов, обеспечивающих алгоритмическое и математическое наполнение приложений и расчетных программ.

Перечень операторов Natural и подробное описание синтаксиса и выполняемых ими функций представлено в [45, 53, 55-59, 62, 34].

2.2.3. Графический интерфейс и обработка отчетных форм

В целях представления данных в рамках пользовательских приложений КИС в наиболее понятном и удобном для конечного пользователя виде, приложения необходимо оформлять в максимально иллюстрированном виде. Также графический интерфейс служит для упрощения процедуры ввода данных (посредством использования полей со списком, полей выбора и пр. для типов заносимых данных, количество значений которых сравнительно невелико).

Ниже представлен перечень основных компонентов графического интерфейса:
– Область управления;
– Поле ввода;
– Групповой фрейм;
– Поле со списком;
– Кнопка;
– Ящик выбора;
– Надпись;
– Таблица;
– Компоненты ActiveX;
– OLE-объекты;
– Кнопка переключателя;
– Прочие.

При проведении основных расчетов, анализа и интерпретации данных модулями КИС лесопромышленного предприятия результаты оформляются и представляются в виде форм ведомостей и других документов. Таким образом, согласно реализуемой модели КИС (рис. 1.1.) компиляция форм должна осуществляться по запросу, осуществляемому в рамках пользовательского приложения, с последующим возвратом полученных отчетных форм в окно приложения для дальнейшей проверки и вывода на печать.
В рамках среды SPoD данная концепция реализуется посредством встроенного редактора отчетных форм Natural Reporter. Natural Reporter также обладает мощным логистическим и математическим инструментарием для обработки анализируемых данных (рис. 2.11.)

2.3. Функционирование системы в условиях распределенной среды

Теория и свойства распределенных баз данных изложены в [41, 166-171].

Под распределенной базой данных (Distributed DataBase - DDB) обычно подразумевают базу данных, включающую фрагменты из нескольких баз данных, которые располагаются на различных узлах сети компьютеров. Для функционирования в условиях распределенной среды СУБД КИС приборостроительного предприятия должна соответствовать следующим 12 признакам:
1. Локальная автономия. Это качество означает, что управление данными на каждом из узлов распределенной системы выполняется локально. База данных, расположенная на одном из узлов, является неотъемлемым компонентом распределенной системы. Будучи фрагментом общего пространства данных, она, в то же время функционирует как полноценная локальная база данных. Управление базы данных осуществляется локально и независимо от других узлов системы.

2. Независимость от центрального узла. В идеальной системе все узлы равноправны и независимы, а расположенные на них базы являются равноправными поставщиками данных в единое информационное пространство. База данных на каждом из узлов самодостаточна, т.е. включает полный собственный словарь данных и полностью защищена от несанкционированного доступа.

3. Непрерывные операции. Это качество можно трактовать как возможность непрерывного доступа к данным в рамках распределенной системы вне зависимости от их расположения и вне зависимости от операций, выполняемых на локальных узлах.

4. Прозрачность расположения. Это свойство означает полную прозрачность расположения данных. Пользователь, обращающийся к распределенной БД, ничего не должен знать о реальном, физическом размещении данных в узлах информационной системы. Все операции над данными выполняются без учета их местонахождения. Транспортировка запросов к базам данных осуществляется встроенными системными средствами.

5. Прозрачная фрагментация. Это свойство трактуется как возможность распределенного размещения данных, логически представляющих собой единое целое. Существует фрагментация двух типов: горизонтальная (хранение строк одной логической таблицы в нескольких идентичных физических таблицах на различных узлах) и вертикальная (распределение столбцов
логической таблицы по нескольким узлам). Следующий пример иллюстрирует оба типа фрагментации. Имеется таблица employee (emp_id, emp_name, phone), определенная в базе данных на узле в городе A (city_A). Имеется точно такая же таблица, определенная в базе данных на узле в городе B (city_B). Обе таблицы хранят информацию о сотрудниках компании. Кроме того, в базе данных на узле в Далласе определена таблица emp_salary (emp_id, salary). Тогда запрос «получить информацию о сотрудниках компании» может быть сформулирован так:

```
READ ALL IN employee@city_A, employee@city_B ORDER BY emp_id
```

6. Прозрачность тиражирования. Тиражирование данных - это асинхронный процесс переноса изменений объектов исходной базы данных в базы, расположенные на других узлах распределенной системы. В данном контексте прозрачность тиражирования означает возможность переноса изменений между базами данных средствами, невидимыми пользователю распределенной системы.

7. Обработка распределенных запросов. Это свойство трактуется как возможность выполнения операций выборки над распределенной базой данных, сформулированных в рамках обычного запроса. То есть операцию выборки можно сформулировать с помощью тех же языковых средств, что и операцию над локальной базой данных. Например,

```
FIND customer.name, customer.address, order.number, order.date IN customer@london, order@paris WHERE customer.cust_number = order.cust_number
```

8. Обработка распределенных транзакций. Это качество можно трактовать как возможность выполнения операций обновления распределенной базы данных (STORE, UPDATE, DELETE), не разрушающее целостность и согласованность данных. Эта цель достигается применением двухфазового или двухфазного протокола фиксации транзакций (two-phase commit protocol), ставшего фактическим стандартом обработки распределенных транзакций. Его
применение гарантирует согласованное изменение данных на нескольких узлах в рамках распределенной (или, как ее еще называют, глобальной) транзакции.

9. Независимость от оборудования. Это свойство означает, что в качестве узлов распределенной системы могут выступать компьютеры любых моделей и производителей (от мэйнфреймов до персональных компьютеров).

10. Независимость от операционных систем. Это качество означает многообразие операционных систем, управляющих узлами распределенной системы.

11. Прозрачность сети. Доступ к любым базам данных может осуществляться по сети. Спектр поддерживаемых конкретной СУБД сетевых протоколов не должен быть ограничением системы с распределенными базами данных. Т.е. в распределенной системе обращение к БД может производиться по любым сетевым протоколам.

12. Независимость от СУБД. Это качество означает, что в распределенной системе могут сосуществовать СУБД различных производителей, и возможны операции поиска и обновления в базах данных различных моделей и форматов.

Все 12 перечисленных принципов, как показано в п.2.1. и п.2.2., в полной мере реализуются в СУБД ADABAS и взаимодействующей с ней среде разработки приложений SPoD.

2.4. Стоимость ПО среды проектирования и эксплуатации

Помимо технических и структурных характеристик СУБД и редакторов приложений, большое значение при принятии решения о приобретении некоторых программных продуктов для построения КИС лесопромышленного предприятия имеют оценка повышения уровня производительности после внедрения, экономического эффекта от внедрения, срока окупаемости инновации и т.д. Таким образом, при разработке и использовании автоматизированных систем управления встает проблема оценки стоимости ее использования.
Сравнительный анализ затрат на использование 3-х ведущих СУБД показан в [172].

На основании проведенных в [172] расчетов, был сделан вывод, что при оценке по критерию «технические возможности – стоимость использования» наилучшей средой разработки КИС лесопромышленного предприятия является СУБД ADABAS и редактор приложений Natural.

2.5. Выводы

1. Вышеописанные структура хранения данных и методы доступа к данным СУБД ADABAS позволяют использовать наиболее эффективный метод доступа к данным в условиях автоматизации деятельности лесопромышленного предприятия – усовершенствованный метод комбинированных индексов.

2. Вышеописанные структура хранения данных и методы доступа к данным СУБД ADABAS обеспечивают наиболее производительный способ получения статистической информации о хранящихся в БД данных – путем задания поисковых полей (дескрипторов).

3. Многоуровневая структура хранения данных (использование периодических групп и множественных полей) СУБД ADABAS позволяет создавать модель структуры лесопромышленного предприятия и модель структуры КИС лесопромышленного предприятия.

4. Мощный инструментарий среды разработки приложений SPoD позволяет конструировать сложные пользовательские приложения, программы взаимодействия с ядром КИС, расчетные программы, отчетные формы, а также, задавать взаимосвязи между ними.

5. Возможность работы СУБД ADABAS и среды разработки приложений SPoD в условиях распределенной среды позволяет создавать крупные корпоративные системы, подразделения которых могут находиться на больших расстояниях друг от друга.
6. Выбранная среда для реализации КИС лесопромышленного предприятия является наиболее подходящей при оценке по критерию «технические возможности – стоимость использования».
3. СИСТЕМНЫЕ СВЯЗИ И ФУНКЦИОНИРОВАНИЕ КОМПОНЕНТОВ КОРПОРАТИВНОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

3.1. Уровень организации ядра КИС лесопромышленного предприятия

При создании КИС лесопромышленного предприятия необходимо учитывать имеющиеся связи между структурными подразделениями, иерархию полномочий и их делегирование, а также значимость этих связей при осуществлении различных процессов деятельности.

В рамках теории управления рассматривается несколько возможных форм представления структуры организации. Все они, как правило, сводятся к графическим отображениям, когда при помощи символов, обозначающих различные подразделения, а также схематических связей, обозначающих отношения между подразделениями (количественных и качественных), строится адекватная модель структуры организации. При этом любая организация может быть представлена с разной степенью подробности (вплоть до отображения мельчайшей административной единицы, существующей в организации).

Графически отображенная модель структуры организации необходима при принятии стратегических и оперативных решений по реструктуризации организации с целью более эффективного управления, по созданию дополнительных подразделений, при реорганизации отношений (финансовых, и пр.) при желаемом увеличении прибыли и т.д.

В рамках КИС лесопромышленного предприятия, создание модели структуры также необходимо. Модель структуры в данном случае создается посредством соответствующей организации ядра КИС. При этом способы задания модели структуры могут быть различными.

В среде СУБД ADABAS все связи между переменными могут быть представлены в следующих видах:
1. Создание структуры при помощи задания свойств полей в БД, фиксированные связи между которыми могут отражаться в виде той или иной иерархической структуры, которая может задаваться различными способами. Вся последующая обработка данных, а также интерфейс предоставления конечных результатов (результаты анализа, учета и пр.) происходит при помощи средств Natural. При этом сама структура в понятной форме будет отражать действительную структуру организации. Структура БД, таким образом, будет являться самой моделью структуры.

2. Создание структуры путем задания параметров переменных в БД без отображения иерархии структуры. Сама структура при этом будет вырисовываться только при обработке данных средствами Natural и при последующем графическом отображении (также с помощью средств Natural).

В зависимости от уровня гибкости структуры организации при создании ядра КИС лесопромышленного предприятия в СУБД ADABAS предлагается использовать следующие типы структуры ядра (пп.3.1.1.-3.1.5.).

3.1.1. Основные аспекты организации ядра в СУБД ADABAS

Структура ядра модуля модификации задается при помощи указания уровней полей, объединения полей в группы и периодические группы.

Объединение полей в группы и периодические группы производится объявлением вспомогательного поля определенного уровня группой или периодической группой в рамках создаваемой таблицы определения данных (таблица FDT). При этом все последующее поля, определенные со следующим уровнем по отношению к уровню группы, считаются элементами группы. Каждой строкой определяется один элемент структуры ядра модуля модификации. Каждая строка состоит из следующих базисных характеристик:

1, A1, 20, A,

где

1 – номер уровня элемента;
A1 – наименование элемента (всегда двухбайтное);
20 – длина элемента (в байтах);

А – формат (в данном случае – алфавитно-цифровой; также существуют двоичный, шестнадцатеричный, упакованный и др. форматы).

Ниже показан пример объединения полей в группы:

1 , AA
2 , A1, 1, A
2 , A2, 4, A

В данном примере элемент AA имеет первый уровень и определен в качестве группы. Т.е. элементы 2-го уровня A1 и A2 являются элементами группы AA.

3.1.2. Реляционная структура ядра

Существует два подхода к проектированию реляционной базы данных.

– Первый подход заключается в том, что на этапе концептуального проектирования создается не концептуальная модель данных, а непосредственно реляционная схема БД, состоящая из определений реляционных таблиц, подвергающихся нормализации.

– Второй подход основан на механическом преобразовании функциональной модели, созданной ранее, в нормализованную реляционную модель. Этот подход чаще всего используется при проектировании больших, сложных схем баз данных, необходимых для корпоративных информационных систем.

На рис. 3.1. представлен пример реляционной модели (отношение степени 5) в виде таблицы, содержащей некоторые сведения о работниках гипотетического предприятия. Строки таблицы соответствуют кортежам. Каждая строка фактически представляет собой описание одного объекта реального мира (в данном случае работника), характеристики которого содержатся в столбцах. Можно провести аналогию между элементами реляционной модели данных и элементами модели "сущность-связь".
Реляционные отношения соответствуют наборам сущностей, а кортежи – сущностям. Поэтому, также как и в модели "сущность-связь" столбцы в таблице, представляющей реляционное отношение, называют атрибутами.

Рис.3.1. Основные компоненты реляционного отношения

В реляционной модели отсутствует понятие группового отношения. Для отражения ассоциаций между кортежами разных отношений используется дублирование их ключей. Пример реляционной модели базы данных, содержащей сведения о подразделениях предприятия и сотрудниках, показан на рис. 3.2.

Рис.3.2. База данных о подразделениях и сотрудниках предприятия

В рамках СУБД ADABAS реляционная модель реализуется двумя способами:
1. Для каждого отношения (таблицы) – создание отдельного файла БД. Представленная выше БД о подразделениях и сотрудниках в СУБД ADABAS будет реализована в следующем виде:

File 1 (соответствует таблице ОТДЕЛЫ):
1 A1, 2, A, DE - номер отдела
1 A2, 40, A - наименование отдела

File 2 (соответствует таблице СОТРУДНИКИ):
1 A1, 2, A, DE - номер отдела
1 B1, 10, A, DE - табельный номер
1 C1, 50, A - имя

File 3 (соответствует таблице ИСПОЛНИТЕЛИ):
1 B1, 10, A, DE - табельный номер
1 D1, 10, A, DE - номер контракта

File 4 (соответствует таблице ЗАКАЗЧИКИ):
1 F1, 50, A, DE - имя заказчика
1 G1, 50, A - адрес заказчика

File 5 (соответствует таблице КОНТРАКТЫ):
1 F1, 50, A, DE - имя заказчика
1 D1, 10, A, DE - номер контракта
1 H1, 8, A - дата
1 I1, 10, U - сумма

2. Создание одного файла БД для основного отношения (для хранения полной информации о каждом контракте) и создание трех дополнительных файлов (для хранения справочной информации об отделах, сотрудниках, заказчиках). Представленная выше БД о подразделениях и сотрудниках в СУБД ADABAS будет иметь следующую структуру:

File 1 – основное отношение:
1 A1, 2, A, DE - номер отдела
1 B1, 10, A, DE - табельный номер
3.1.3. Иерархическая структура ядра

Компоненты базы данных, основанной на иерархической модели, могут быть представлены в виде рис. 3.3.

Основная единица обработки - запись. К основным понятиям иерархической структуры относятся: уровень, элемент (узел), связь.

Узел - это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), не подчиненную никакой другой вершине и находящуюся на самом верхнем (первом) уровне. Зависимые (подчиненные) узлы находятся на втором, третьем и т.д. уровнях. Количество деревьев в базе данных определяется числом корневых записей.

К каждой записи базы данных существует только один (иерархический) путь от корневой записи.
Рис 3.3. Древовидная структура компонентов баз данных, основанных на иерархической модели хранения данных

В рамках СУБД ADABAS иерархическая модель БД о подразделениях и сотрудниках предприятия (рис. 3.2.) реализуется следующим способом:

File 1 (реализующий связь ОТДЕЛЫ-СОТРУДНИКИ-ИСПОЛНИТЕЛИ):

1 , A1, 2, A, DE - номер отдела
1 , A2, 40, A - наименование отдела
1 , AA - группа СОТРУДНИКИ (2-й уровень)
2 , B1, 10, A, DE - табельный номер
2 , B2, 50, A - имя
2 , BB - группа ИСПОЛНИТЕЛИ (3-й уровень)
3 , C1, 10, A, DE - номер контракта

File 2 (реализующий связь ЗАКАЗЧИКИ-КОНТРАКТЫ-ИСПОЛНИТЕЛИ):

1 , A1, 50, A, DE - имя заказчика
1 , A2, 50, A - адрес заказчика
1 , AA - группа КОНТРАКТЫ (2-й уровень)
2 , B1, 10, A, DE - номер контракта
2 , B2, 8, A - дата
2 , B3, 10, U - сумма
2 , BB - группа ИСПОЛНИТЕЛИ (3-й уровень)
3 , C1, 10, A, DE - табельный номер
3.1.4. Многоуровневая структура ядра

Основными отличиями многоуровневой структуры ядра от иерархической являются:

– возможность задания нескольких вершин (корней дерева);
– в каждой из корневых записей может присутствовать несколько реализаций, что позволяет использовать связь М:N.

Остальные связи и правила создания иерархических структур в СУБД ADABAS остаются теми же и при создании многоуровневой структуры. Основные компоненты БД, основанные на многоуровневой модели структуры ядра, представлены на рис 3.4.

![Diagram](image)

Рис. 3.4. Структура компонентов баз данных, основанных на многоуровневой модели структуры ядра

В рамках СУБД ADABAS вышеописанная модель структуры ядра создается при помощи объединения полей в периодические группы. Периодическая группа может состоять из одного или более полей и в пределах данной записи могут встречаться от 0 до 191 реализаций, но, по крайней мере, одна реализация (даже, если она содержит все нулевые значения) должна присутствовать в каждой входной записи.

Периодическая группа должна быть описана на уровне 1. Все поля, которые должны содержаться в периодической группе, должны следовать
точное после и должны быть описаны на уровне 2 или выше (с приращением 1 до максимального 7 уровня). Следующее описание уровня 1 указывает на конец текущей периодической группы.

В СУБД ADABAS многоуровневая структура БД о подразделениях и сотрудниках предприятия (представленная на рис. 3.2.) реализуется следующим способом:

File 1 (реализующий связи ОТДЕЛЫ-СОТРУДНИКИ-ИСПОЛНИТЕЛИ и ЗАКАЗЧИКИ-КОНТРАКТЫ-ИСПОЛНИТЕЛИ):

1 , AA, PE - периодическая группа ОТДЕЛЫ-СОТРУДНИКИ-ИСПОЛНИТЕЛИ
2 , AB - группа ОТДЕЛЫ (2-й уровень)
3 , A1, 2, A, DE - номер отдела
3 , A2, 40, A - наименование отдела
3 , AC - группа СОТРУДНИКИ (3-й уровень)
4 , B1, 10, A, DE - табельный номер
4 , B2, 50, A - имя
4 , AD - группа ИСПОЛНИТЕЛИ (4-й уровень)
5 , C1, 10, A, DE - номер контракта
1 , BA, PE - периодическая группа ЗАКАЗЧИКИ-КОНТРАКТЫ-ИСПОЛНИТЕЛИ
2 , BB - группа ЗАКАЗЧИКИ (2-й уровень)
3 , D1, 50, A, DE - имя заказчика
3 , D2, 50, A - адрес заказчика
3 , BC - группа КОНТРАКТЫ (3-й уровень)
4 , F1, 10, A, DE - номер контракта
4 , F2, 8, A - дата
4 , F3, 10, U - сумма
4 , BD - группа ИСПОЛНИТЕЛИ (4-й уровень)
5 , G1, 10, A, DE - табельный номер
3.1.5. Мультипольная структура ядра

Характерной чертой мультипольной структуры ядра БД является возможность хранения нескольких значений в рамках одного, специальным способом определенного, поля. В СУБД ADABAS такое поле носит название «мультиполе» (или множественное поле). Фактическое количество значений, присутствующих в каждой записи мультипола, может меняться от 0 до 191, но, по крайней мере, одно значение (даже пустое) должно присутствовать в каждой входной записи.

Значения хранятся согласно другим опциям, указанным для поля. Первое значение - это предшествующий полю счетчик, который указывает количество значений, в настоящее время присутствующих в поле. Количество хранимых значений, равное количеству значений, представленных во входной записи, плюс любые значения, добавленные во время обновления поля, меньше любых подавленных значений (в случае, если поле определено с опцией подавления пустых значений).

Если количество значений, содержащихся в каждой входной записи постоянно, это количество может быть определено при определении мультипола в формате MU(n), где "n" равняется количеству значений, представленных в каждой входной записи. Если количество значений не постоянно для всех входных записей, то однобайтовый двоичный счетчик поля должен предшествовать первому значению каждой входной записи, указывая количество существующих в ней значений.

Приемущества использования мультипольных структур проявляются в тех случаях, когда необходимо для каждой записи периодически вносить дополнительные данные. Например, в случае с представленной на рис. 3.2. БД использование мультиполей было бы целесообразно при ведении учета ежемесячно начисляемой заработной платы для каждого из сотрудников. В рамках реляционной БД эта связь реализовывалась бы в следующем виде (табл. 3.1):
Структура реляционной БД начисления заработной платы сотрудникам

Таблица 3.1.

<table>
<thead>
<tr>
<th>Табельный номер сотрудника</th>
<th>Номер отдела</th>
<th>Дата начисления заработной платы</th>
<th>Сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td>2457578765</td>
<td>06</td>
<td>02.01.08</td>
<td>18000</td>
</tr>
<tr>
<td>2457578765</td>
<td>06</td>
<td>02.02.08</td>
<td>16700</td>
</tr>
<tr>
<td>2457578765</td>
<td>06</td>
<td>02.03.08</td>
<td>19200</td>
</tr>
</tbody>
</table>

По каждому начислению заработной платы в таблице БД создается новая запись (табл. 3.1.). При этом связь с другими таблицами БД (например, ИСПОЛНИТЕЛИ и ОТДЕЛЫ) осуществляется посредством ключей «Табельный номер» и «Номер отдела».

При использовании мультиполей, если представить мультипольную структуру в виде двухмерной таблицы, ее вид будет следующим (табл. 3.2.):

Структура мультипольной структуры БД начисления заработной платы сотрудникам

Таблица 3.2.

<table>
<thead>
<tr>
<th>Табельный номер сотрудника</th>
<th>Номер отдела</th>
<th>Дата начисления заработной платы</th>
<th>Сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td>2457578765</td>
<td>06</td>
<td>02.01.08</td>
<td>18000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02.02.08</td>
<td>16700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02.03.08</td>
<td>19200</td>
</tr>
</tbody>
</table>

В данном случае при начислении заработной платы не создается новая запись целиком, а только добавляются соответствующие значения в мультиполя («Дата начисления заработной платы» и «Сумма» - табл. 3.2.). При этом данная структура может быть как самостоятельным файлом БД, так и частью другого файла любой из вышеописанных структур ядра.

В СУБД ADABAS мультипольная структура БД начисления заработной платы (табл. 3.2.) реализуется следующим способом:

File 1 (основное отношение):
1 , A1, 10, A, DE - табельный номер сотрудника
3.1.6. Смешанная структура ядра

Организация смешанной структуры ядра КИС представляет синтез свойств структур ядра, описанных в пп.3.1.2.-3.1.5.

Мультимодельность ADABAS в совокупности с рядом дополнительных возможностей, позволяет строить как сугубо традиционные иерархические, сетевые и реляционные SQL базы данных, так и сложные текстовые информационно-поисковые и интегрированные системы и системы обработки изображений, постреляционные структуры для моделирования человеческой деятельности, экспертного анализа сложных производственных процессов и т.д.

При этом можно сочетать преимущества различных подходов. Структуры ядра всех типов могут беспрепятственно использоваться как при создании нескольких файлов различных структур, так и в рамках одного файла.

В СУБД ADABAS можно спроектировать БД в третьей нормальной форме и при этом, в целях повышения производительности часть связей преобразовать в иерархию. Таким образом, проектировщику предоставляется возможность выйти за рамки ограничений определенного подхода и, объединив преимущества всех подходов, достичь большей производительности и гибкости создаваемой системы на конкретных запросах. Все многообразие видов информационных систем и технологий становится возможным благодаря тому, что ADABAS обеспечивает поддержку следующих моделей (и типов) данных:

- Непервая нормальная форма (NF2 - Non-First Normal Form). Традиционная реляционная модель данных. Эта модель соответствует ANSI/ISO стандарту SQL92 и реализована в виде либо надстройки над ADABAS, либо как неотъемлемая часть ADABAS D.

- Модель данных сущность-связь (E/R модель). В ADABAS предусмотрено расширение до E/R модели (Entity-Relationship модель) для
управления сложными структурами данных с высокой степенью связности, а также рекурсивные структуры данных (когда элемент структуры данных содержит один или несколько указателей на элементы такого же типа). Объединяя эту модель с другими моделями ADABAS можно строить чрезвычайно мощные интегрированные базы данных и, соответственно, прикладные системы. Предпочтительные области для применения E/R моделей — системы представления знаний, моделирование поведения сложных технических и биологических систем, расчеты потребностей, планирование материальных ресурсов различного вида и назначения (Bills of Materials). Например, традиционные для последней предметной области проблемы информационного взрыва и управления циклами легко разрешимы с помощью возможностей E/R расширения ADABAS.

– Обработка и управление произвольными текстами. Этот тип данных (и соответствующие средства манипулирования ими) обеспечивает доступ к документам, обрабатываемым ADABAS, как к произвольным текстам.

– Изображения и аудиоинформация. Поддержка изображений и аудиоинформации в ADABAS основана на функции гипердескрипции (hyperdescriptor). Она позволяет использовать множественные значения индексов, выработанных внешним матобеспечением, или определенных пользователем, для концептуально однородных объектов (тезаурус). Эти значения, собственно, и обрабатываются далее ADABAS, делая, таким образом, возможным обращение к объектам и работу с ними при помощи других процедур, предоставляемых СУБД.

ADABAS имеет мощные и удобные в работе средства администрирования баз данных, реализованные как в интерактивном, так и в пакетном режимах, на всех серверных платформах.

На основе ADABAS в мире построено множество больших прикладных систем, как OLTP, так и OLAP. В то же время, благодаря возможности
использования смешанных структур ядра БД, ADABAS может служить основой не только "традиционных" БД, но и хранилищ данных (Data Warehouse).

3.1.7. Рекомендации по выбору структуры ядра для КИС лесопромышленного предприятия

В таблице 3.3. в качестве примера показана часть БД КИС, отражающая структуру компонентов посменного учета расхода пиловочного сырья производственными подразделениями в рамках программного модуля управления производством КИС.

Структура ядра БД КИС для элементов посменного учета пиловочного сырья модуля управления лесопильным производством

Таблица 3.3.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Определение элементов (таблица FDT)</th>
<th>Название элемента</th>
<th>Соответствующий элемент структуры КИС лесопромышленного предприятия</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 , AM, 1, A</td>
<td>поле</td>
<td>Индикатор включения элементов программного модуля управления производством</td>
</tr>
<tr>
<td>2</td>
<td>1 , PM</td>
<td>группа</td>
<td>Программный модуль управления производством:</td>
</tr>
<tr>
<td>3</td>
<td>2 , AA, 1, A</td>
<td>поле</td>
<td>Индикатор включения элементов блока управления лесопильным производством</td>
</tr>
<tr>
<td>4</td>
<td>2 , AZ</td>
<td>группа</td>
<td>Блок управления лесопильным производством</td>
</tr>
<tr>
<td>5</td>
<td>3 , AP, 1, A</td>
<td>поле</td>
<td>Индикатор включения элементов посменного учета расхода пиловочного сырья</td>
</tr>
<tr>
<td>6</td>
<td>3 , A1</td>
<td>группа</td>
<td>Посменный учет расхода пиловочного сырья производственными подразделениями лесопильного производства.</td>
</tr>
<tr>
<td>7</td>
<td>4 , BP, 1, A</td>
<td>поле</td>
<td>Индикатор включения программ взаимодействия с ядром КИС</td>
</tr>
<tr>
<td>8</td>
<td>4 , B1, PE</td>
<td>периодическая группа</td>
<td>Программы взаимодействия с ядром КИС:</td>
</tr>
<tr>
<td>№</td>
<td>Код</td>
<td>Поле</td>
<td>Описание</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>9</td>
<td>5, Z1, 1, A</td>
<td>Поле</td>
<td>Программа интерпретации получаемых от приложений данных о посменном расходе сырья и внесения в БД</td>
</tr>
<tr>
<td>10</td>
<td>5, Z2, 1, A</td>
<td>Поле</td>
<td>Программа внесения плановых величин расхода пиловочного сырья</td>
</tr>
<tr>
<td>11</td>
<td>5, Z3, 1, A</td>
<td>Поле</td>
<td>Запрос количества израсходованного вида сырья за смену на определенную дату</td>
</tr>
<tr>
<td>12</td>
<td>5, Z4, 1, A</td>
<td>Поле</td>
<td>Запрос количества израсходованного вида сырья (порода, сорт, диаметр, длина) на определенную дату на определенной производственной стадии</td>
</tr>
<tr>
<td>13</td>
<td>5, Z5, 1, A</td>
<td>Поле</td>
<td>Запрос общего количества израсходованного сырья заданного сорта и древесной породы</td>
</tr>
<tr>
<td>14</td>
<td>5, Z6, 1, A</td>
<td>Поле</td>
<td>Запрос количества израсходованного сырья заданного вида</td>
</tr>
<tr>
<td>15</td>
<td>5, Z7, 1, A</td>
<td>Поле</td>
<td>Запрос общего количества израсходованного сырья заданной длины и диаметра</td>
</tr>
<tr>
<td>16</td>
<td>5, Z8, 1, A</td>
<td>Поле</td>
<td>Запрос общего количества израсходованного сырья заданного диаметра</td>
</tr>
<tr>
<td>17</td>
<td>5, Z9, 1, A</td>
<td>Поле</td>
<td>Запрос продолжительности и причины простого оборудования на заданной производственной стадии, заданным производственным подразделением на определенную дату</td>
</tr>
<tr>
<td>18</td>
<td>5, ZA, 1, A</td>
<td>Поле</td>
<td>Запрос продолжительности и причин простого оборудования на всех производственных стадиях, всеми подразделениями на определенную дату и за промежуток времени</td>
</tr>
<tr>
<td>19</td>
<td>5, ZB, 1, A</td>
<td>Поле</td>
<td>Запрос количества сырья всех видов, израсходованного производственным подразделением за месяц</td>
</tr>
<tr>
<td>20</td>
<td>5, ZC, 1, A</td>
<td>Поле</td>
<td>Запрос количества сырья всех видов, израсходованного на производственных стадиях за месяц</td>
</tr>
<tr>
<td>21</td>
<td>5, ZD, 1, A</td>
<td>Поле</td>
<td>Запрос количества использованного сырья по критериям, выбиаемым и задаваемым пользователем</td>
</tr>
<tr>
<td>№</td>
<td>Индикатор</td>
<td>Поле/группа</td>
<td>Описание</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>22</td>
<td>4, BQ, 1, A</td>
<td>поле</td>
<td>Индикатор включения программ основных расчетов</td>
</tr>
<tr>
<td>23</td>
<td>4, B2, PE</td>
<td>периодическая группа</td>
<td>Программы основных расчетов:</td>
</tr>
<tr>
<td>24</td>
<td>5, Y1, 1, A</td>
<td>поле</td>
<td>Расчет стоимости пиловочного сырья, израсходованного каждым подразделением и всеми подразделениями за единицу времени</td>
</tr>
<tr>
<td>25</td>
<td>5, Y2, 1, A</td>
<td>поле</td>
<td>Расчет процента выполнения плана расхода сырья, израсходованного каждым подразделением и всеми подразделениями</td>
</tr>
<tr>
<td>26</td>
<td>5, Y3, 1, A</td>
<td>поле</td>
<td>Расчет стоимости сырья всех видов, израсходованного производственным подразделением за месяц</td>
</tr>
<tr>
<td>27</td>
<td>5, Y4, 1, A</td>
<td>поле</td>
<td>Расчет стоимости сырья всех видов, израсходованного на производственных стадиях за месяц</td>
</tr>
<tr>
<td>28</td>
<td>5, Y5, 1, A</td>
<td>поле</td>
<td>Расчет стоимости израсходованного за единицу времени, вид сырья, сорт и размеры которого выбирается пользователем</td>
</tr>
<tr>
<td>29</td>
<td>5, Y6, 1, A</td>
<td>поле</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4, BR, 1, A</td>
<td>поле</td>
<td>Индикатор включения пользовательских приложений</td>
</tr>
<tr>
<td>31</td>
<td>4, B3, PE</td>
<td>периодическая группа</td>
<td>Пользовательские приложения:</td>
</tr>
<tr>
<td>32</td>
<td>5, X1, 1, A</td>
<td>поле</td>
<td>Приложение внесения данных.</td>
</tr>
<tr>
<td>33</td>
<td>5, X2, 1, A</td>
<td>поле</td>
<td>Приложение внесения плановых величин.</td>
</tr>
<tr>
<td>34</td>
<td>5, X3, 1, A</td>
<td>поле</td>
<td>Приложение управления программным модулем КИС (управление запросами, расчетными программами, отчетными формами).</td>
</tr>
<tr>
<td>35</td>
<td>5, X4, 1, A</td>
<td>поле</td>
<td>Приложение выбора критериев поиска и задания значений критериев</td>
</tr>
<tr>
<td>36</td>
<td>4, BS, 1, A</td>
<td>поле</td>
<td>Индикатор включения отчетных форм</td>
</tr>
<tr>
<td>37</td>
<td>4, B4, PE</td>
<td>периодическая группа</td>
<td>Отчетные формы:</td>
</tr>
<tr>
<td>38</td>
<td>5, W1, 1, A</td>
<td>поле</td>
<td>Ведомость выполнения плана раскроя сырья</td>
</tr>
</tbody>
</table>
При построении структуры ядра модуля модификации иерархия элементов КИС в таблице определения данных (таблице FDT) задается посредством следующих уровней:

1 – программные модули общего назначения (модули управления запасами, управления производством, планово-аналитической деятельности и т.д.)

2 – специализированные программные блоки – составляющие программных модулей общего назначения (для модуля управления производством лесопромышленного предприятия - блоки управления лесопильным производством, фанерным производством, производством древесных плит, мебельным производством, вспомогательными производствами).

3 – группы учета специализированных блоков (для блока управления лесопильным производством - посменный учет расхода пиловочного сырья производственными подразделениями лесопильного производства, посменный учет досок-полуфабрикатов произведенных подразделениями лесопильного производства, посменный учет расхода бревен для окорки окорочными подразделениями лесопильного производства и т.д.).

4 – сгруппированные компоненты КИС групп учета (это всегда программы взаимодействия с ядром системы, пользовательские приложения, программы основных расчетов, отчетные формы).
5 – непосредственно программы, алгоритмы, приложения, формы соответствующих компонентов КИС (запрос количества израсходованного вида сырья за смену на определенную дату, ведомость выполнения плана раскроя сырья и т.д.)

Также при помощи модуля модификации КИС лесопромышленного предприятия в файлах значений идентификаторов элементов записей (табл. 1.1.) задаются значения следующих переменных:

– Количество и наименования структурных подразделений предприятия;
– Количество хозрасчетных бригад, участков;
– Количество смен;
– Количество калькулируемых объектов (изделий);
– Количество и наименование деталей;
– Количество и наименование причин отклонения от нормы;
– Технические характеристики объекта:
 – Количество и наименования используемых древесных пород;
 – Назначение;
 – Количество и наименования способов распиловки;
 – Количество и наименования сортов;
– Типы клеильного пресса;
– Марки фанеры;
– Количество сушильных камер;
– Количество пакетов;
– Назначение причин простой оборудования;
– Количество категорий качества сушки пиломатериалов;
– Количество режимов камерной сушки.

Для переменных, требующих определения дополнительных значений (наименования причин простой оборудования и пр.) создается отдельный файл БД, и в пользовательском приложении предусматриваются соответствующие
элементы ввода дополнительных значений, которые активизируются пользователем.

Например, при редактировании переменных количества и наименований структурных подразделений лесопромышленного предприятия, требуется ввод количества подразделений, в зависимости от которого активизируется соответствующее количество полей ввода для занесения наименований каждого из подразделений. Структура файла значений идентификаторов элементов записей при редактировании переменных количества и наименований структурных подразделений показана ниже:

1, AA, 2, A
1, AB, PE
2, A1, 100, A, MU
2, A2, 2, A, MU, где

AA – количество структурных подразделений (поле);
AB – группа наименований структурных подразделений (периодическая группа);
A1 – наименования структурных подразделений (множественное поле);
A2 – порядковый номер структурного подразделение (множественное поле).

Многоуровневая структура, рассмотренная в примере, позволяет для каждой переменной (количество структурных подразделений – AA) хранить несколько значений (номер структурного подразделения и наименование).

Для определения значений переменных «технические характеристики объекта» часть структуры ядра модуля будет выглядеть следующим образом:

1, BA, 2, A
1, BB, PE
2, B1, 2, A, MU
2, B2, 100, A, MU
2, B3, 150, A, MU
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, B4, 2, A</td>
<td>1, B5, PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C1, 2, A, MU</td>
<td>C2, 100, A, MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1, B6, 2, A</td>
<td>1, B7, PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D1, 2, A, MU</td>
<td>D2, 100, A, MU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

где

BA - количество используемых древесных пород (поле);
BB – группа наименований используемых древесных пород (периодическая группа);

В1 - порядковый номер наименования древесной породы (множественное поле);
В2 - наименование древесной породы (множественное поле);
В3 – назначение древесной породы (множественное поле);
В4 – количество способов распиловки (поле);
В5 – группа наименований способов распиловки (периодическая группа);
С1 - порядковый номер способа распиловки (множественное поле);
С2 – наименование способов распиловки (множественное поле);
В6 – количество сортов (поле);
В7 – группа сортов (периодическая группа);
D1 - порядковый номер сорта (множественное поле);
D2 – наименование сорта (множественное поле).
3.2. Уровень пользовательских приложений

3.2.1. Формирование списка активных элементов пользовательских приложений

Процедура формирования списка активных элементов пользовательских приложений осуществляется в следующем порядке:

1. Редактирование пользователем значений переменных ядра БД при помощи соответствующего пользовательского приложения.

2. Интерпретация и внесение изменений в файл параметров БД КИС (ядро модуля модификации).

3. Исполнение процедуры формирования списка активных элементов в момент открытия пользовательского приложения редактируемого программного модуля:

 – Чтение значений переменных в ядре модуля модификации КИС.
 – Интерпретация значений переменных.
 – В зависимости от значений переменных - присвоение элементам открываемого приложения соответствующего статуса (активного, неактивного, видимого, невидимого и т.д.)

Каждая из процедур реализуется посредством исполнения соответствующего программного кода на языке Natural. Основы программирования в среде Natural изложены в [45, 183].

Программа вызывается встроенной событийно-ориентированной подпрограммой открываемого приложения, сигналом (событием) к исполнению которой послужит наступление определенного события.

Пример подпрограммы вызова:

perform sub01

где sub01 – название исполняемой программы.

Ниже показан пример вызываемой программы чтения значений переменных в ядре КИС (nas) и «выключения» (неактивные элементы) 2 элементов пользовательского приложения #tc-1 и #if-1, а также, изменения
текущего значения текстовой переменной на «Номер режима камерной сушки» при условии, что значение параметра aa в файле nas равно 1.

read (1) in nas
if aa = '1' then
assign #tc-1.visible := false
assign #tc-1.enabled := false
assign #if-1.visible := false
assign #if-1.enabled := false
move 'Номер режима камерной сушки' to #tc-2.string
end-if
end-read

В результате исполнения данного кода элементы пользовательского приложения #tc-1 и #if-1, будут недоступными, а строка элемента #tc-2 будет содержать значение «Номер режима камерной сушки».

На основе значений параметров изменяются как внутренние свойства элементов приложений (поля ввода, текстовые переменные, поля со списком), так и свойства самого приложения.

В дальнейшем, во всех последующих открываемых приложениях также производится редактирование списков активных элементов.

3.2.2. Формирование списка активных пользовательских приложений

Программный код интерпретации значений, указанных пользователем посредством электронной формы ввода и последующего формирования списка активных приложений КИС имеет следующий вид:

if #tb-2.checked = checked and #tb-2.enabled = true
move '1' to aa
move '1' to x3
end-if
if #tb-2.checked = unchecked or #tb-2.enabled = false
move '0' to aa
move '0' to x3
end-if
if #tb-1.checked = checked and #tb-1.enabled = true
move '1' to ap
move '1' to bp
move '1' to bq
move '1' to br
end-if
if #tb-1.checked = unchecked or #tb-1.enabled = false
move '0' to ap
move '0' to bp
move '0' to bq
move '0' to br
end-if
if #tb-4.checked = checked and #tb-4.enabled = true
move '1' to bs
end-if
if #tb-4.checked = unchecked or #tb-4.enabled = false
move '0' to bs
end-if
if #tb-5.checked = checked and #tb-5.enabled = true
move '1' to w1
end-if
if #tb-5.checked = unchecked or #tb-5.enabled = false
move '0' to w1
end-if
if #tb-9.checked = checked and #tb-9.enabled = true
move '1' to w2
end-if
if #tb-9.checked = unchecked or #tb-9.enabled = false
move '0' to w2
end-if
if #tb-12.checked = checked and #tb-12.enabled = true
move '1' to w3
end-if
if #tb-12.checked = unchecked or #tb-12.enabled = false
move '0' to w3
end-if
if #tb-14.checked = checked and #tb-14.enabled = true
move '1' to w4
end-if
if #tb-14.checked = unchecked or #tb-14.enabled = false
move '0' to w4
end-if
if #tb-20.checked = checked and #tb-20.enabled = true
move '1' to w5
end-if
if #tb-20.checked = unchecked or #tb-20.enabled = false
move '0' to w5
end-if
if (#tb-5.checked = checked and #tb-5.enabled = true)
or (#tb-9.checked = checked and #tb-9.enabled = true)
or (#tb-12.checked = checked and #tb-12.enabled = true)
or (#tb-14.checked = checked and #tb-14.enabled = true)
or (#tb-20.checked = checked and #tb-20.enabled = true)
or (#tb-22.checked = checked and #tb-22.enabled = true)
or (#tb-23.checked = checked and #tb-23.enabled = true)
or (#tb-24.checked = checked and #tb-24.enabled = true)
or (#tb-25.checked = checked and #tb-25.enabled = true)
move '1' to z1
move '1' to x1
end-if
if (#tb-5.checked = unchecked or #tb-5.enabled = false)
and (#tb-9.checked = unchecked or #tb-9.enabled = false)
and (#tb-12.checked = unchecked or #tb-12.enabled = false)
and (#tb-14.checked = unchecked or #tb-14.enabled = false)
and (#tb-20.checked = unchecked or #tb-20.enabled = false)
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
and (#tb-23.checked = unchecked or #tb-23.enabled = false)
and (#tb-24.checked = unchecked or #tb-24.enabled = false)
and (#tb-25.checked = unchecked or #tb-25.enabled = false)
move '0' to z1
move '0' to x1
end-if
if (#tb-9.checked = checked and #tb-9.enabled = true)
or (#tb-22.checked = checked and #tb-22.enabled = true)
move '1' to z2
move '1' to y2
move '1' to x2
end-if
if (#tb-9.checked = unchecked or #tb-9.enabled = false)
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
move '0' to z2
move '0' to y2
move '0' to x2
end-if
if (#tb-9.checked = checked and #tb-9.enabled = true)
or (#tb-14.checked = checked and #tb-14.enabled = true)
or (#tb-22.checked = checked and #tb-22.enabled = true)
move '1' to z3
end-if
if (#tb-9.checked = unchecked or #tb-9.enabled = false)
and (#tb-14.checked = unchecked or #tb-14.enabled = false)
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
move '0' to z3
end-if
if (#tb-5.checked = checked and #tb-5.enabled = true)
or (#tb-9.checked = checked and #tb-9.enabled = true)
or (#tb-14.checked = checked and #tb-14.enabled = true)
or (#tb-22.checked = checked and #tb-22.enabled = true)
move '1' to z4
move '1' to z8
end-if
if (#tb-5.checked = unchecked or #tb-5.enabled = false)
and (#tb-9.checked = unchecked or #tb-9.enabled = false)
and (#tb-14.checked = unchecked or #tb-14.enabled = false)
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
move '0' to z4
move '0' to z8
end-if
if (#tb-6.checked = checked and #tb-6.enabled = true)
or (#tb-9.checked = checked and #tb-9.enabled = true)
or (#tb-14.checked = checked and #tb-14.enabled = true)
or (#tb-22.checked = checked and #tb-22.enabled = true)
move '1' to z5
end-if
if (#tb-6.checked = unchecked or #tb-6.enabled = false)
and (#tb-9.checked = unchecked or #tb-9.enabled = false)
and (#tb-14.checked = unchecked or #tb-14.enabled = false)
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
move '0' to z5
end-if
if #tb-7.checked = checked and #tb-7.enabled = true
or (#tb-10.checked = checked and #tb-10.enabled = true)
or (#tb-15.checked = checked and #tb-15.enabled = true)
move '1' to z6
end-if
if #tb-7.checked = unchecked or #tb-7.enabled = false
and (#tb-10.checked = unchecked or #tb-10.enabled = false)
and (#tb-15.checked = unchecked or #tb-15.enabled = false)
move '0' to z6
end-if
if #tb-8.checked = checked and #tb-8.enabled = true
or (#tb-11.checked = checked and #tb-11.enabled = true)
or (#tb-16.checked = checked and #tb-16.enabled = true)
move '1' to z7
end-if
if #tb-8.checked = unchecked or #tb-8.enabled = false
and (#tb-11.checked = unchecked or #tb-11.enabled = false)
and (#tb-16.checked = unchecked or #tb-16.enabled = false)
move '0' to z7
end-if
if (#tb-12.checked = checked and #tb-12.enabled = true)
or (#tb-22.checked = checked and #tb-22.enabled = true)
move '1' to z9
end-if
if (#tb-12.checked = unchecked or #tb-12.enabled = false)
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
move '0' to z9
end-if
if #tb-13.checked = checked and #tb-13.enabled = true
move '1' to za
end-if
if #tb-13.checked = unchecked or #tb-13.enabled = false
move '0' to za
end-if
if #tb-23.checked = checked and #tb-23.enabled = true
move '1' to zb
end-if
if #tb-23.checked = unchecked or #tb-23.enabled = false
move '0' to zb
end-if
if #tb-24.checked = checked and #tb-24.enabled = true
move '1' to zc
end-if
if #tb-24.checked = unchecked or #tb-24.enabled = false
move '0' to zc
end-if
if #tb-20.checked = checked and #tb-20.enabled = true
or (#tb-22.checked = checked and #tb-22.enabled = true)
or (#tb-25.checked = checked and #tb-25.enabled = true)
move '1' to zd
end-if
if #tb-20.checked = unchecked or #tb-20.enabled = false
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
and (#tb-25.checked = unchecked or #tb-25.enabled = false)
move '0' to zd
end-if
if #tb-17.checked = checked and #tb-17.enabled = true
move '1' to y3
end-if
if #tb-17.checked = unchecked or #tb-17.enabled = false
move '0' to y3
end-if
if #tb-18.checked = checked and #tb-18.enabled = true
move '1' to y4
end-if
if #tb-18.checked = unchecked or #tb-18.enabled = false
move '0' to y4
end-if
if #tb-19.checked = checked and #tb-19.enabled = true
or (#tb-20.checked = checked and #tb-20.enabled = true)
or (#tb-22.checked = checked and #tb-22.enabled = true)
move '1' to y5
end-if
if #tb-19.checked = unchecked or #tb-19.enabled = false
and (#tb-20.checked = unchecked or #tb-20.enabled = false)
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
move '0' to y5
end-if
if (#tb-20.checked = checked and #tb-20.enabled = true)
or (#tb-22.checked = checked and #tb-22.enabled = true)
move '1' to x4
end-if
if (#tb-20.checked = unchecked or #tb-20.enabled = false)
and (#tb-22.checked = unchecked or #tb-22.enabled = false)
move '0' to x4
end-if
store record in kernel1
end

Запуск данного программного кода требует, чтобы область допустимых значений переменных (w1, x1, z1 и пр.) была определена. Программный код определения допустимых значений переменных приведенного выше программного кода, а также всех последующих программных кодов показан ниже:

DEFINE DATA LOCAL
1 KERNEL1 VIEW OF KERNEL1
2 AM (A1)
3 PM
3 AA (A1)
3 AZ
4 AP (A1)
4 A1
Пример формирования списка доступных пользователю приложений в соответствии со сформированным списком активных элементов меню управляющего приложения показан на рис. 3.5.
Рис. 3.5. Приложения, доступные пользователю на основе сформированного списка активных элементов
3.2.3. Автоматическая настройка активных пользовательских приложений

Идея автоматической настройки активных приложений КИС заключается в создании модели структуры КИС лесопромышленного предприятия в виде иерархической структуры однобайтовых полей, которая задается посредством назначения однобайтовым полям свойств взаимосвязанных полей, множественных полей, групп и периодических групп. Эта структура может существовать в виде одного или нескольких файлов БД. Непосредственно, настройка КИС, т.е. изменение перечня и порядка выполнения программных компонентов основных программных модулей КИС осуществляется путем редактирования значений, хранящихся в однобайтовых полях ядра модуля модификации (переменные ядра модуля модификации).

Чтобы представить взаимодействие описанной структуры с иными компонентами КИС рассмотрим структуру КИС лесопромышленного предприятия.

Каждый из программных модулей КИС лесопромышленного предприятия (перечень модулей дан в главе 1) может быть представлен как совокупность программ взаимодействия с ядром системы (программы-запросы, программы внесения данных и пр.), пользовательских приложений, программ основных расчетов и отчетных форм (рис. 1.1.). В рамках КИС программы-запросы, приложения расчетные программы и формы создаются как самостоятельные компоненты системы. Компоненты системы могут быть:

– стандартизованные (обязательные для использования программными модулями КИС);

– специализированные (используемые выборочно, в рамках специализированных программных модулей или в рамках основных программных модулей, модифицированных с учетом особенностей предприятия).
Программные модули КИС – это совокупность стандартизированных и специализированных компонентов системы.

Для обеспечения возможности автоматической настройки приложений КИС, необходимо каждый из компонентов КИС наделить свойством исполнения (запуска) на основе значений переменных ядра модуля модификации.

Для осуществления модификации КИС лесопромышленного предприятия предусматривается редактирование 2 групп файлов параметров:

– Файлы значений переменных элементов записей. Значения переменных изменяются в зависимости от технологических особенностей предприятия.

– Файлы значений переменных, на основе которых осуществляется формирование списка активных элементов приложений и перечня программ взаимодействия, программ основных расчетов и отчетных форм, используемых программными модулями КИС. Значения этих параметров изменяются в соответствии с отраслевой и внутриорганизационной спецификой лесопромышленного предприятия.

Таким образом, структура ядра модуля модификации КИС лесопромышленного предприятия состоит из файлов значений переменных элементов записей и файлов значений переменных модификации КИС.

При запуске компонентов КИС (в т.ч. приложений) на основе значений полей ядра модуля модификации событийно-ориентированными подпрограммами формируется список активных, т.е. отображаемых и изменяемых элементов (таких, как поле ввода или переключатель), а также свойства этих элементов. Активные элементы приложений событийно-ориентированными подпрограммами связываются с приложениями доступа и манипулирования данными, приложениями, осуществляющими управление программами взаимодействия с БД КИС и программами основных расчетов.

Значения некоторых переменных не подлежат редактированию со стороны пользователя КИС. Перечень таких переменных определяется поставщиком КИС, в зависимости от заказанного пользователем модульного состава КИС.
Для хранения значений этих переменных формируется отдельный файл в БД системы. Доступ к полям, содержащим значения переменных, не подлежащих редакции пользователями КИС запрещается. Редактирование значений остальных переменных осуществляется пользователем посредством приложений модификации КИС. Доступ к таким приложениям защищается администраторским паролем.

Осуществление автоматической настройки приложений КИС лесопромышленного предприятия модулем модификации может быть представлено в виде схемы (рис. 3.6.)

На рис. 3.6. введены следующие условные обозначения:

1 – на основе пароля доступа формирование списка параметров (полей), значения которых могут редактироваться пользователем;

2 – изменение значений идентификаторов элементов записей и внесение изменений в файл БД КИС;

3 – изменение значений параметров формирования активных элементов и внесение изменений в файл БД КИС;

4 – формирование области значений идентификаторов записи, как самостоятельного компонента программного модуля;

5 - формирование области значений параметров, как самостоятельного компонента программного модуля на основе значений параметров;

6 – формирование списка специализированных программ взаимодействия с БД КИС, используемых в рамках программных модулей КИС на основе области значений идентификаторов элементов записи и области значений параметров;

7 - формирование списка специализированных пользовательских приложений и активных элементов приложений, используемых в рамках программных модулей КИС на основе области значений идентификаторов элементов записи и области значений параметров;
Рис. 3.6. Схема процесса автоматической настройки приложений КИС лесопромышленного предприятия
8 - формирование списка специализированных программ основных расчетов, используемых в рамках программных модулей КИС на основе области значений идентификаторов элементов записи и области значений параметров;

9 - формирование списка специализированных отчетных форм, используемых в рамках программных модулей КИС на основе области значений идентификаторов элементов записи и области значений параметров;

10, 11, 12 – формирование списков стандартных программ взаимодействия с БД КИС, программ основных расчетов и отчетных форм происходит на основе встроенных процедур пользовательских приложений. Перечень стандартных пользовательских приложений является неизменным для любых программных модулей КИС лесопромышленного предприятия.

3.3. Уровень расчетных программ КИС

3.3.1. Оптимизация запросов

При оптимизации на уровне расчетных программ ведущее место занимает организация запросов к БД. Нерационально составленный запрос замедляет работу системы, перегружает рабочие станции, отвлекает ресурсы серверов на излишнюю обработку данных.

Для обеспечения эффективности работы расчетных программ запросы должны обладать следующими свойствами:

- возможность выбора пользователем критериев запроса;
- использование оптимального количества критериев запроса;
- оптимальная логическая структура запроса.

Для обеспечения возможности проведения запросов на основе критериев, задаваемых пользователем, указывается значение соответствующей переменной (поле ZD в примере в табл. 3.3.)

На основе значения этой переменной в приложении управления программным модулем КИС (поле Х3 табл.3.3.) активизируются элементы,
связанные средствами событино-ориентированного программирования с приложением выбора критериев поиска (поле X4 табл.3.3.).

В целях обеспечения производительности рекомендуется организовывать запросы данных на основе перечня не более чем 8-10 критериев. Часть перечня формируется пользователем (3-5 критериев), и часть - являются фиксированными (3-5 критериев дата, номер смены, номер производственного подразделения и т.д.). Значения критериев в обоих случаях задаются пользователем.

Процесс осуществления запроса, дальнейшей обработки данных, расчетов и представления результатов в виде отчетной формы представлен на рис.3.7.

На рис. 3.7. использованы следующие условные обозначения:

1 – передача результата выбора критериев поиска (экспорт списка критериев поиска).
2 – передача значений критериев поиска.
3 – передача интерпретированных значений критериев поиска.
4 – передача во временный файл результатов поиска на основе значений критериев выбранных пользователем.
5 – передача во временный файл результатов поиска на основе значений критериев выбранных пользователем.
6 – запуск поиска на основе фиксированных критериев поиска.
7 – передача в рабочий файл результатов поиска на основе значений выбранных и фиксированных критериев запроса и значений параметров файла БД модуля модификации.
8 – передача результатов поиска на основе значений выбранных и фиксированных критериев запроса и значений параметров файла БД модуля модификации для проведения расчетов.
9 – передача результатов расчетов.
10 – передача интерпретированных значений параметров и результатов расчета.
Рис. 3.7. Схема процесса запроса, дальнейшей обработки и расчетов, и представление результатов в виде отчетной формы

11 – представление элементов формы (таблиц, диаграмм, графиков) для редактирования.

12 – подача отчетной формы на печать.

Приложение выбора критериев запроса предлагает пользователю:
– выбор критериев поиска и ввод значений выбранных критериев
– выбор фиксированных критериев при помощи редактирования значений элементов приложения (полей со списком, альтернативных списков и пр.).

После ввода значений критериев включается алгоритм интерпретации введенных значений. Интерпретированные значения являются базой для поиска.

Ниже приведен код программы интерпретации значений 3 критериев, выбираемых пользователем при помощи 6 элементов приложения выбора критериев (#tb-1, #tb-2, #tb-3 – индикаторы использования критериев; #sb-1, #sb-2, #sb-3 – поля ввода значений соответствующих критериев) в рамках программного блока управления лесопильным производством:

```lisp
if #tb-1.checked = checked then
  move '1' to #b1
  move #sb-1.string to #a1
end-if
if #tb-1.checked = unchecked then
  move '0' to #b1
end-if
if #tb-2.checked = checked then
  move '1' to #b2
  move #sb-2.string to #a2
end-if
if #tb-2.checked = unchecked then
  move '0' to #b2
end-if
if #tb-3.checked = checked then
  move '1' to #b3
  move #sb-3.string to #a3
end-if
if #tb-3.checked = unchecked then
  move '0' to #b3
end-if
```

Показанный пример присваивает значение «1» переменным #b1, #b2, #b3 и значения полей ввода #sb-1, #sb-2, #sb-3 переменным #a1, #a2, #a3, в случае включения индикаторов использования критериев поиска #tb-1, #tb-2, #tb-3. Если какие-либо из индикаторов #tb-1, #tb-2, #tb-3 не включены, соответствующим переменным #b1, #b2, #b3 присваивается значение «0».
Следующий программный код осуществляет поиск данных в файле БД uchmat на основе значений переменных #b1, #b2, #b3 и #a1, #a2, #a3 и сохранение результатов поиска во временном файле «first»:

if #b1 = '1' and #b2 = '0' and #b3 = '0' then find uchmat with a1 = #a1
retain as 'first'
end-find
end-
find
end-
if
if #b1 = '0' and #b2 = '1' and #b3 = '0' then find uchmat with a2 = #a2
retain as 'first'
END-find
end-
if
if #b1 = '0' and #b2 = '0' and #b3 = '1' then find uchmat with a3 = #a3
retain as 'first'
END-find
end-
if
if #b1 = '1' and #b2 = '1' and #b3 = '0' then find uchmat with a1 = #a1 and a2 = #a2
retain as 'first'
END-find
end-
if
if #b1 = '1' and #b2 = '0' and #b3 = '1' then find uchmat with a1 = #a1 and a3 = #a3
retain as 'first'
END-find
end-
if
if #b1 = '0' and #b2 = '1' and #b3 = '1' then find uchmat with a3 = #a3 and a2 = #a2
retain as 'first'
END-find
end-
if
if #b1 = '1' and #b2 = '1' and #b3 = '1' then find uchmat with a3 = #a3 and a2 = #a2
and a1 = #a1
retain as 'first'
END-find
end-
if

Фиксированные критерии поиска являются обязательными для ввода. Поэтому наличие индикаторов включения данных критериев (присвоение значения «0» для соответствующих переменных ядра модуля) не является необходимым. Показанный ниже код осуществляет поиск данных на основе введенных значений фиксированных критериев (поля ввода значений критериев #sb-4, #sb-5, #sb-6) и результатов поиска на основе критериев, выбираемых пользователем (файл «first»).
move #sb-4.string to #a4
move #sb-5.string to #a5
move #sb-6.string to #a6
find uchmat with ‘first’ and a4 = #a4 and a5 = #a5 and a6 = #a6

Результаты поиска заносятся в рабочий файл. Пример программного кода создания рабочего файла, и сохранения результатов поиска показан ниже:

```
DEFINE WORK FILE n 'путь'
WRITE WORK FILE n VARIABLE
x1 x2 x3 x4 x5
CLOSE WORK FILE n
```

где n – порядковый номер создаваемого рабочего файла;

'путь' – месторасположение файла на физическом носителе (задается автоматически);

x1, x2, x3, x4, x5 – названия переменных, значения которых сохраняются в рабочий файл (в данном случае это названия полей БД, по значениям которой осуществлялся поиск, а также значения параметров файла БД модуля модификации).

Над значениями переменных, сохраненных в рабочие файлы, производятся основные вычисления. Элементы отчетных форм редактируются на основе значений параметров рабочих файлов аналогичным образом.

3.3.2. Использование различных типов переменных

В рамках СУБД ADABAS и Natural используется большое количество типов переменных, которые отличаются:

- по формату данных;
- по обработке хранимых значений;
- по возможности проведения запросов к хранимым значениям;
- по возможности проведения математических и логических операций с хранимыми значениями и т.д.

В целях оптимизации программных кодов необходимо предусматривать оптимальное использование различных типов переменных.

В СУБД ADABAS в целях запросы данных могут осуществляться только к поисковым полям (дескрипторам) различных типов. Любое поле при
определении FDT может быть определено дескриптором. Для поля, определенного дескриптором будет сделан вход в инвертированном списке ассоциатора, который позволит этому полю: использоваться в выражении поиска и в качестве ключа сортировки в команде FIND, управлять последовательным логическим чтением или использовать для связи файла.

Используются следующие типы дескрипторов:

- DE – дескриптор;
- SB – субдескриптор;
- SP – супердескриптор;
- HY – гипердескриптор;
- PH – фонетический дескриптор.

Субдескриптор - это дескриптор, созданный из части элементарного поля. Элементарное поле может быть или не быть дескриптором непосредственно. Субдескриптор может также использоваться, как субполе; то есть, он может быть определен в форматном буфере для определения формата выходных записей.

Субдескриптор должен быть определен со следующими параметрами:

- Имя - имя субдескриптора. Правила присвоения имени субдескриптору, идентичны тем, которые используются для имени поля ADABAS.
- UQ (опция Unique) - указывает, что субдескриптор должен быть определен как уникальный.
- Исходное поле - имя исходного поля, из которого будет получен субдескриптор.
- Начало - относительная позиция байта в пределах исходного поля, где начинается описание субдескриптора.
- Конец - относительная позиция байта в пределах исходного поля, где кончается описание субдескриптора.
- Подсчет параметров начало и конец делается слева направо, начная с 1 для алфавитно-цифровых полей, и справа налево, начиная с 1 для цифровых и двоичных полей. Если исходное поле определено с форматом R, знак
результатирующего значения субдескриптора будет взят из 4 битов младшего разряда байта младшего разряда (т. е. 1 байт).

Исходное поле может быть:
− дескриптором;
− элементарным полем;
− множественным полем (но не конкретная реализация множественного поля);
− входить в состав периодической группы (но не конкретная реализация периодической группы).

Исходное поле не может быть:
− периодической группой, субдескриптором, супердескриптором или фонетическим дескриптором;
− G формата (с плавающей точкой).

Супердескриптор - это дескриптор, созданный из нескольких полей, частей полей или их комбинации. Каждое поле-первоисточник (или часть поля) используемое для определения супердескриптора, называется исходным. Супердескриптор может быть определен с использованием от 2 до 20 исходных полей или частей поля. Супердескриптор может также быть определен, как уникальный дескриптор. Супердескриптор может также использоваться, как суперполе; то есть, он может быть определен в форматном буфере для определения формата выходной записи.

Субдескриптор должен быть определен со следующими параметрами:

Имя – имя супердескриптора. Правила присвоения имени супердескриптору, идентичны тем, которые используются для имени поля ADABAS.

UQ (опция Unique) - указывает, что супердескриптор должен быть определен как уникальный (см. описание опции UQ на странице 50).

Исходное поле - имя исходного поля, из которого будет получен элемент супердескриптора; может быть определено до 20 исходных полей.
Начало - относительная позиция байта в пределах исходного поля, где начинается описание супердескриптора.

Конец - относительная позиция байта в пределах исходного поля, где заканчивается описание супердескриптора.

Подсчет параметров начало и конец делается слева направо, начиная с 1 для алфавитно-цифровых полей, и справа налево, начиная с 1 для цифровых и двоичных полей. Для любого исходного поля кроме тех, которые определены как "FI", значения начала и конца имеют силу в пределах разрешенного диапазона для типа данных исходного поля.

Исходное поле может быть:
– элементарным или максимумом одним множественным полем (но не определенного значения множественного поля);
– в пределах периодической группы (но не определенная реализация);
– дескриптором.

Исходное поле не может быть:
– супер-, суб- или фонетическим дескриптором;
– G формата (с плавающей точкой);
– поле опции NC, если другое исходное поле - поле опции NU;
– длинное алфавитно-цифровое (LA) поле.

Полная длина любого значения супердескриптора не может превышать 253 байта (алфавитно-цифровые) или 126 (двоичных) байтов. Супердескриптор имеет алфавитно-цифровой формат, если какой-нибудь элемент супердескриптора получен из алфавитно-цифрового исходного поля; иначе, супердескриптор имеет двоичный формат. Все супердескрипторы двоичного формата обрабатываются, как числа без знака.

Гипердескриптор позволяет сгенерировать значения дескриптора на основании алгоритма, обеспеченного пользователем.

Значения основаны на алгоритмах, закодированных в специальных пользовательских выходах гипердескриптора (от HEX01 до HEX31). Каждому
гипердескриптору должен быть назначен пользовательский выход, и отдельный пользовательский выход может обрабатывать множество гипердескрипторов (рис. 3.8.).

Рис. 3.8. Гипердескриптор и пользовательские выходы

Входные параметры необходимые для пользовательского выхода:
− имя гипердескриптора;
− номер файла;
− адреса полей, взятых из записи памяти данных, вместе с именем поля и PE индексом (если применяется). Эти адреса указывают на сжатые значения полей.

Пользовательский выход должен возвратить значение дескриптора (DVT) в сжатом формате. Может быть не возвращено никакого значения или одно или большее количество значений в зависимости от опций (PE, MU), определенных для гипердескриптора.

Исходный ISN, назначенный для входного значения, может быть изменен.

При использовании гипердескрипторов следует учитывать следующие примечания:
− Проектировщик определяет формат, длину и опции гипердескриптора. Они не могут быть взяты от исходного поля, определенного в параметре HY.
− Поиск, использующий значение гипердескриптора, выполняется тем же способом, что и для стандартных дескрипторов.
− Проектировщик ответствен за создание корректных значений гипердескриптора. Нет никакого стандартного пути проверки значений.
гипердескриптора на целостность в памяти данных. Пользователь должен установить правила описания каждого значения и проверки корректности значения.

– Если формат гипердескриптора упакованный или распакованный, ADABAS проверяет возвращенные значения на правильность. Знак полбайта для упакованного значения может содержать A, C, E, F (положительный) или B, D (отрицательный). ADABAS преобразует знак в F или D.

– Если файл содержит больше одного гипердескриптора, назначенные выходы вызываются в алфавитном порядке имен гипердескрипторов.

Гипердескриптор должен быть определен со следующими параметрами:

Номер - номер пользовательского выхода, который будет назначен для гипердескриптора. Ядро ADABAS использует этот номер для определения пользовательского выхода гипердескриптора, который будет вызван.

Имя - имя, которое используется для гипердескриптора. Правила присвоения имени гипердескриптору идентичны тем, которые используются для имени поля ADABAS.

Длина - длина гипердескриптора по умолчанию.

Формат – формат гипердескриптора:

<table>
<thead>
<tr>
<th>Формат</th>
<th>Максимальная длина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Алфавитно-цифровой (A)</td>
<td>253 байта</td>
</tr>
<tr>
<td>Двоичный (B)</td>
<td>126 байтов</td>
</tr>
<tr>
<td>С фиксированной точкой (F)</td>
<td>4 байта (всегда 2 или 4 байта)</td>
</tr>
<tr>
<td>С плавающей точкой (G)</td>
<td>8 байтов (всегда 4 или 8 байтов)</td>
</tr>
<tr>
<td>Упакованный десятичный (P)</td>
<td>15 байтов</td>
</tr>
<tr>
<td>Распакованный десятичный (U)</td>
<td>29 байтов</td>
</tr>
</tbody>
</table>

Опция - опция, которая будет назначена гипердескриптору.

Исходное поле - имя исходного поля. Гипердескриптор может иметь от 1 до 20 исходных полей. Имена полей и адреса передаются пользовательскому выходу.
Если исходное поле определено с опцией NU, никакие входы не генерируются в инвертированном списке гипердескриптора для записей, содержащих нулевые значения поля. Это действительно не зависит от присутствия или отсутствия значений для других элементов гипердескриптора.

Для лучшего понимания процедуры определения гипердескриптора ниже приведен пример описания гипердескриптора.

Для этого примера используются следующее описание (табл. 3.4.):

Пример описания гипердескриптора

<table>
<thead>
<tr>
<th>Описание определенных полей</th>
<th>Значения полей</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,LN,20,A,DE,NU</td>
<td>Фамилия</td>
</tr>
<tr>
<td>1,FN,20,A,MU,NU</td>
<td>Имя</td>
</tr>
<tr>
<td>1,ID,4,B,NU</td>
<td>Идентификатор</td>
</tr>
<tr>
<td>1,AG,3,U</td>
<td>Возраст</td>
</tr>
<tr>
<td>1,AD,PE</td>
<td>Адрес</td>
</tr>
<tr>
<td>2,CI,20,A,NU</td>
<td>Город</td>
</tr>
<tr>
<td>2,ST,20,A,NU</td>
<td>Улица</td>
</tr>
<tr>
<td>1,FR,20,A,NU</td>
<td>Имя родственника</td>
</tr>
<tr>
<td>2,NR,20,A,NU</td>
<td>Фамилия родственника</td>
</tr>
</tbody>
</table>

Таблица 3.4.

Описание гипердескриптора: HYPDE='2,NH,60,A,MU,NU=LN,FN,FR’

Гипердескриптору назначен пользовательский выход 2 и имя гипердескриптора - HN. Длина гипердескриптора - 60, формат - алфавитно-цифровой и множественное (MU) поле с подавлением нулей (NU).

Фонетический дескриптор позволяет проводить запросы, при которых все возвращенные записи будут содержать подобные фонетические значения (иметь аналогичное произношение). Фонетическое значение дескриптора основано на первых 20 байтах значения поля. Рассматриваются только алфавитные значения; числовые значения, специальные символы и пробелы игнорируются. Нижний и верхний регистры алфавитно-цифровых символов внутренне идентичны.
Фонетический дескриптор должен быть определен со следующими параметрами:

Имя - имя, которое будет использоваться для фонетического дескриптора. Правила присвоения имени фонетическому дескриптору, идентичны тем, которые используются для имени поля ADABAS.

Поле - имя поля, которое будет транскрибировано фонетически.

Поле должно быть:

− элементарным или множественным полем;
− определено в алфавитно-цифровом формате.

Поле может быть дескриптором.

Поле не может:

− быть субдескриптором, супердескриптором или гипердескриптором;
− входить в состав периодической группы;
− использоваться, как исходное поле, для более, чем одного фонетического дескриптора.

3.3.3. Формирование списка активных расчетных программ

Этапы формирования списка активных расчетных программ КИС следующие:

1. Создание связи активных элементов пользовательских приложений с запуском различных компонентов КИС на основе значений переменных ядра модуля модификации.

2. Редактирование пользователем значений переменных ядра модуля модификации, интерпретация и внесение изменений в ядро модуля модификации.

3. В процессе работы с программными приложениями, в момент наступления определенных событий, связанных с активными элементами приложений - чтение значений переменных ядра модуля модификации, интерпретация и вызов соответствующих программных компонентов КИС.
Связь активных расчетных программ с запуском программных компонентов КИС на основе значений переменных ядра осуществляется при помощи средств событийно-ориентированного программирования [45]. Фактически, она подразумевает исполнение программного кода, запускающего определенный компонент КИС в зависимости от значений тех или иных переменных ядра модуля модификации.

Примером осуществления связи активных программ с запуском программных компонентов КИС служит следующий программный код:

```
DECIDE ON FIRST *EVENT
  VALUE 'CLICK'
  OPTIONS 2 CLICK
  if bq = '1' then run sub1
  end-if
  if bq = '0' then run sub2
  end-if
  OPTIONS 3
  NONE
  PERFORM #DLGSHANDLER$DEFAULT
END-DECIDE
```

Данный программный код обеспечивает запуск подпрограммы «sub1» в случае, когда значение переменной bq (индикатор включения расчетных программ) равно «1»; и запуск подпрограммы «sub2» в случае, когда значение переменной bq равно «0».

Основными событиями, служащими сигналом для запуска программных компонентов КИС являются:

- редактирование активного элемента;
- ввод значения активного элемента;
- переключение на другой активный элемент;
- щелчок мыши (для кнопок, альтернативных списков и пр.);
- двойной щелчок мыши;
- открытие приложения;
- закрытие приложения;
- прочие.
Показанный ниже программный код после щелчка мыши по кнопке #pb-1 выполняет запуск программного компонента «sub1» при значении переменной bq равной «1», и возвращающей пользователю сообщение о недоступности компонента, если значение переменной bq не равно «1»:

```
DEFINE DATA
  PARAMETER
    01 #DLG$PARENT HANDLE OF GUI BY VALUE
  LOCAL
    01 #DLG$WINDOW HANDLE OF WINDOW
    01 #PB-1 HANDLE OF PUSHBUTTON
END-DEFINE
VALUE #PB-1
DECIDE ON FIRST *EVENT
  VALUE 'CLICK'
    OPTIONS 2 CLICK
    read (1) in nas
    if bq = '1' then run sub1
    end-if
    IF NOT (bq = '1')
      assign text = 'Данный программный компонент не активен'
      assign title = 'Изменение данных'
      assign stil = 'SO'
      open dialog ngu-messagebox
        using #dlg$window
        with #msg-box
      end-if
      end-read
    OPTIONS 3
    NONE
    PERFORM #DLG$HANDLER$DEFAULT
END-DECIDE
```

3.3.4. Использование системы индикаторов расчетными программами

Система индикаторов КИС лесопромышленного предприятия представляет собой многоуровневую структуру однобайтовых полей и отражает структуру программных модулей КИС. Методы создания многоуровневых структур СУБД ADABAS рассмотрены в [45, 182].
Система индикаторов КИС служит для создания связей между расчетными программами и компонентами КИС (приложениями, формами, модулями и пр.), по отношению к которым эти программы исполняются.

В таблице 3.5. показаны индикаторы на основе, которых формируются значения компонентов посменного учета расхода пиловочного сырья производственными подразделениями предприятия (соответствующие элементам табл.3.3.).

Описание индикаторов посменного учета пиловочного сырья модуля управления лесопильным производством

Таблица 3.5.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Название индикатора</th>
<th>Номера активизируемых индикаторов</th>
<th>Соответствующие элементы таблицы FDT (табл. 3.1.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Модуль управления лесопильным производством</td>
<td>2</td>
<td>2 , AA, 1, A</td>
</tr>
<tr>
<td>2</td>
<td>Посменный учет пиловочного сырья</td>
<td>3; 20</td>
<td>3 , AP, 1, A</td>
</tr>
<tr>
<td>3</td>
<td>Отчетные формы</td>
<td>4; 8; 11;13; 19</td>
<td>4 , BS, 1, A</td>
</tr>
</tbody>
</table>
| 4 | Ведомость выполнения плана раскроя сырья | 5; 6; 7 | 5 , W1, 1, A
5 , Z1, 1, A
5 , Z2, 1, A
5 , Z4, 1, A
5 , Z8, 1, A
5 , Y2, 1, A
5 , X1, 1, A
5 , X2, 1, A |
<p>| 5 | Учет выполнения плана раскроя сырья по заданному сорту и древесной породе | - | 5 , Z5, 1, A |
| 6 | Учет выполнения плана раскроя сырья по заданному сорту | - | 5 , Z6, 1, A |</p>
<table>
<thead>
<tr>
<th>№</th>
<th>Таблица</th>
<th>Описание</th>
<th>Коды</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>Учет выполнения плана раскроя сырья по заданной длине и диаметру</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Ведомость объемов распиленного пиловочника</td>
<td>9; 10</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Учет количества израсходованного сырья по заданному сорту</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Учет общего количества израсходованного сырья по заданной длине и диаметру</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Ведомость простого оборудования</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Учет продолжительности и причин простоя на всех производственных стадиях на определенную дату и за промежуток времени</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Ведомость стоимости пиловочного сырья</td>
<td>14; 15; 16; 17; 18</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Учет стоимости израсходованного сырья по заданному сорту</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Учет стоимости израсходованного сырья по заданной длине и диаметру</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Учет стоимости сырья всех видов, израсходованного производственным подразделением за месяц</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>Учет стоимости сыра всех видов, израсходованного на производственных стадиях за месяц</td>
<td>-</td>
<td>5, Y4, 1, A</td>
</tr>
<tr>
<td>18</td>
<td>Учет стоимости израсходованного сырья за единицу времени по заданному виду сырья, сорту и размерам</td>
<td>-</td>
<td>5, Y5, 1, A</td>
</tr>
<tr>
<td>19</td>
<td>Отчетная форма количества израсходованного сырья по задаваемым критериям</td>
<td>-</td>
<td>5, W5, 1, A 5, Z1, 1, A 5, ZD, 1, A 5, Y5, 1, A 5, X1, 1, A 5, X4, 1, A</td>
</tr>
<tr>
<td>20</td>
<td>Дополнительные параметры посменного учета пиловочного сырья</td>
<td>21; 22; 23; 24</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>Применение стандартных параметров посменного учета пиловочного сырья</td>
<td>-</td>
<td>5, Z1, 1, A 5, Z2, 1, A 5, Z3, 1, A 5, Z4, 1, A 5, Z5, 1, A 5, Z8, 1, A 5, Z9, 1, A 5, Y1, 1, A 5, Y2, 1, A 5, Y5, 1, A 5, X1, 1, A 5, X2, 1, A 5, X4, 1, A 5, ZD, 1, A</td>
</tr>
<tr>
<td>22</td>
<td>Учет количества сыра всех видов, израсходованного производственным подразделением за месяц</td>
<td>-</td>
<td>5, ZB, 1, A 5, Z1, 1, A 5, X1, 1, A</td>
</tr>
<tr>
<td>23</td>
<td>Учет количества сыра всех видов, израсходованного на производственных стадиях за месяц</td>
<td>-</td>
<td>5, ZC, 1, A 5, Z1, 1, A 5, X1, 1, A</td>
</tr>
<tr>
<td>24</td>
<td>Учет количества использованного сырья по критериям, выбираемым и задаваемым пользователем</td>
<td>-</td>
<td>5, ZD, 1, A 5, Z1, 1, A 5, X1, 1, A</td>
</tr>
</tbody>
</table>
3.4. Уровень отчетных форм

3.4.1. Получение отчетных форм на основе задаваемых критериев

Пример генерации отчетной формы на основе критериев, задаваемых пользователем показан на рис. 3.9.

На основе значений критериев, заданных пользователем выполняется запрос на выборку данных. Более подробно технология осуществления запроса на выборку данных рассмотрена в п.3.3. и в [45, 182-197]. По желанию пользователя результат может быть выведен на экран и распечатан в виде отчетной ведомости (рис. 3.10.).

Рис. 3.10. Вывод отчетной формы (ведомости) сгенерированной на основе критериев пользователя

Ведомость расхода пиловочного сырья № 2654 - 001 A

Дата: 3 марта 2006 г. Смена: 2 Бригада № 2

<table>
<thead>
<tr>
<th>№</th>
<th>Длина сырья</th>
<th>Диаметр</th>
<th>Количество, шт</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>сосна</td>
<td>25 мм</td>
<td>20</td>
</tr>
</tbody>
</table>

Рис. 3.10. Вывод отчетной формы (ведомости) сгенерированной на основе критериев пользователя
3.4.2. Формирование списка активных отчетных форм

Процедура формирования списка активных отчетных форм показана на рис. 3.11 и 3.12. Посредством управляющего меню приложения задается перечень доступных пользователю отчетных форм (рис. 3.11 и 3.12).

Программный код формирования списка активных отчетных форм имеет следующий вид:

```plaintext
code: read (1) in kernel1
if ap = '1' assign #MITEM-4.enabled := true
end-if
if ap = '0' assign #MITEM-4.enabled := false
derm-if
if bs = '1' assign #MITEM-30.enabled := true
derm-if
if bs = '0' assign #MITEM-30.enabled := false
derm-if
if w1 = '1' assign #MITEM-33.enabled := true
derm-if
if w1 = '0' assign #MITEM-33.enabled := false
derm-if
if w2 = '1' assign #MITEM-34.enabled := true
derm-if
if w2 = '0' assign #MITEM-34.enabled := false
derm-if
if w3 = '1' assign #MITEM-35.enabled := true
derm-if
if w3 = '0' assign #MITEM-35.enabled := false
derm-if
if w4 = '1' assign #MITEM-36.enabled := true
derm-if
if w4 = '0' assign #MITEM-36.enabled := false
derm-if
if w5 = '1' assign #MITEM-37.enabled := true
derm-if
if w5 = '0' assign #MITEM-37.enabled := false
derm-if
if zb = '1' assign #MITEM-46.enabled := true
derm-if
if zb = '0' assign #MITEM-46.enabled := false
derm-if
if zc = '1' assign #MITEM-47.enabled := true
derm-if
```

139
if zc = '0' assign #MITEM-47.enabled := false end-if
if zd = '1' assign #MITEM-42.enabled := true end-if
if zd = '0' assign #MITEM-42.enabled := false end-if
if x1 = '1'
 assign #MITEM-9.enabled := true
 assign #MITEM-29.enabled := true
 assign #MITEM-35.enabled := false
 assign #MITEM-38.enabled := true
 assign #MITEM-39.enabled := true
 assign #MITEM-40.enabled := true
 assign #MITEM-41.enabled := true
 assign #MITEM-44.enabled := true
end-if
if x1 = '0'
 assign #MITEM-9.enabled := false
 assign #MITEM-29.enabled := false
 assign #MITEM-35.enabled := false
 assign #MITEM-38.enabled := false
 assign #MITEM-39.enabled := false
 assign #MITEM-40.enabled := false
 assign #MITEM-41.enabled := false
 assign #MITEM-44.enabled := false
end-if
end-read
Рис. 3.11. Управляющее меню приложения

Рис. 3.12. Процедура формирования списка отчетных форм
3.4.3. Автоматическая настройка элементов отчетных форм

Основой для автоматической настройки элементов отчетных форм является электронная форма, которая содержит иерархию сгруппированных индикаторов или переключателей (рис.3.13. и рис. 3.14.). Посредством индикаторов пользователю предлагается активизировать элементы КИС в соответствии с потребностями предприятия и его организационной структурой.

Каждый индикатор (переключатель) может отвечать за один или несколько элементов структуры КИС лесопромышленного предприятия. Индикаторы более низкого уровня активизируются включением индикаторов более высокого уровня. Например, в рамках модуля управления лесопильным производством индикаторы параметров формирования ведомости выполнения плана раскроя пиловочного сырья активизируются посредством индикатора «Ведомость выполнения плана раскроя сырья» - рис. 3.15. и 3.16.

Согласно рис. 3.13. и 3.14. при настройке элементов форм используется включает 6 групп параметров. Первые 5 групп параметров соответствуют видам производств и активизируются в зависимости от тех видов производств, которые существуют на предприятии. Т.о. каждая группа параметров отвечает за настройки специализированных программных блоков КИС (составляющих программных модулей общего назначения). Шестая группа параметров отвечает за дополнительные настройки всех специализированных блоков КИС.
Рис. 3.13. Интерфейс управляющего приложения автоматической настройки элементов отчетных форм
Рис. 3.14. Интерфейс управляющего приложения автоматической настройки элементов отчетных форм
Рис. 3.15. Индикатор «Ведомость выполнения плана раскроя сырья» в состоянии «выключено»

Рис. 3.16. Индикатор «Ведомость выполнения плана раскроя сырья» в состоянии «включено»

Каждая группа индикаторов учета специализированных программных блоков КИС (посменный учет пиловочного сырья и пр.) активизирует индикаторы параметров отчетных форм и индикаторы дополнительных параметров.

3.5. Выводы

1. Существуют 4 основных уровня функционирования элементов КИС лесопромышленного предприятия:
 - уровень организации ядра КИС;
 - уровень пользовательских приложений КИС;
 - уровень расчетных программ КИС;
- уровень отчетных форм.
2. Возможна оптимизация функционирования КИС лесопромышленного предприятия на всех 4-х уровнях, что позволяет снижать затраты на разработку, внедрение и эксплуатацию, а также повышать производительность КИС.

3. Основными критериями оптимальной структуры и состава КИС лесопромышленного предприятия являются:
- эффективная организация ядра (способы задания структуры ядра представлены в п.3.1.);
- оптимизация пользовательских приложений (п.3.2.);
- оптимальное построение запросов и программных кодов (п.3.3.);
- наличие инструмента генерации отчетных форм в соответствии с требованиями конечного пользователя (п.3.4.).

4. Предлагаемые функциональные уровни реализованы в среде, наилучшим образом подходящей для реализации КИС промышленного предприятия (среде СУБД ADABAS и Natural).

5. В предлагаемой среде реализации КИС существует возможность проведения модификаций при помощи графических пользовательских приложений, что обеспечивает простоту и наглядность процесса модификации системы и позволяет снижать затраты на обучение персонала работе с КИС.

6. Одним из наиболее важных компонентов КИС является ядро, которое содержит значения переменных, являющихся основанием для модификации и оптимизации КИС.

7. Основными методами оптимизации КИС лесопромышленного предприятия являются:
- Метод формирования списка активных элементов КИС;
- Метод формирования списка активных компонентов КИС;
- Метод автоматической настройки компонентов КИС;
- Метод получения отчетных форм на основе задаваемых критериев.
4. АНАЛИЗ ЭФФЕКТИВНОСТИ СИСТЕМНЫХ СВЯЗЕЙ И ЗАКОНОМЕРНОСТЕЙ ФУНКЦИОНИРОВАНИЯ КИС ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

4.1. Основные показатели эффективности различных способов организации ядра КИС лесопромышленного предприятия

В данном разделе приводятся основные показатели эффективности организации ядра КИС способами, описанными в главе 3. База данных о подразделениях и сотрудниках предприятия (рассмотренная в качестве примера в главе 3) организуется в виде каждого из перечисленных способов организации ядра. В качестве основы для создания БД принимаются следующие гипотетические данные:
- количество отделов – 20;
- количество сотрудников – 1000;
- количество заказчиков – 1000;
- количество контрактов – 1000000 (по 1000 у каждого сотрудника).

4.1.1. Реляционная структура ядра

Основные показатели эффективности 1-го способа организации реляционной структуры ядра показана в таблице 4.1.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Кол-во записей в БД</th>
<th>Размер БД, кбайт</th>
<th>Время запроса на выборку, с</th>
<th>Время запроса на подсчет количества записей, с</th>
<th>Время на чтение всех записей в БД, с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Кол-во файлов БД - 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Файл 1 (отделы)</td>
<td>20</td>
<td>4</td>
<td>0,05</td>
<td>0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>3. Файл 2 (сотрудники)</td>
<td>1000</td>
<td>64</td>
<td>0,1</td>
<td>0,05</td>
<td>0,4</td>
</tr>
<tr>
<td>4. Файл 3 (исполнители)</td>
<td>1000000</td>
<td>16368</td>
<td>0,2</td>
<td>0,05</td>
<td>370,1</td>
</tr>
<tr>
<td>5. Файл 4 (заказчики)</td>
<td>1000</td>
<td>108</td>
<td>0,1</td>
<td>0,05</td>
<td>0,4</td>
</tr>
<tr>
<td>6. Файл 5 (контракты)</td>
<td>1000000</td>
<td>83762</td>
<td>0,3</td>
<td>0,05</td>
<td>398,6</td>
</tr>
<tr>
<td>Общий размер БД</td>
<td>-</td>
<td>100306</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Основные показатели эффективности 2-го способа организации реляционной структуры ядра показана в таблице 4.2.

Основные показатели эффективности реляционной структуры ядра (2-й способ организации)

Таблица 4.2.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Кол-во записей в БД</th>
<th>Размер БД, кбайт</th>
<th>Время запроса на выборку, с</th>
<th>Время запроса на подсчет количества записей, с</th>
<th>Время на чтение всех записей в БД, с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Количество файлов БД (таблица) - 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Файл 1 (основное отношение)</td>
<td>1000000</td>
<td>91128</td>
<td>0,3</td>
<td>0,05</td>
<td>412,7</td>
</tr>
<tr>
<td>3. Файл 2 (справочная информация об отделах)</td>
<td>20</td>
<td>4</td>
<td>0,05</td>
<td>0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>4. Файл 3 (справочная информация о сотрудниках)</td>
<td>1000</td>
<td>60</td>
<td>0,1</td>
<td>0,05</td>
<td>0,3</td>
</tr>
<tr>
<td>5. Файл 4 (справочная информация о заказчиках)</td>
<td>1000</td>
<td>108</td>
<td>0,1</td>
<td>0,05</td>
<td>0,4</td>
</tr>
<tr>
<td>Общий размер БД</td>
<td>-</td>
<td>91300</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4.1.2. Иерархическая структура ядра

Основные показатели эффективности организации иерархической структуры ядра показана в таблице 4.3.
Основные показатели эффективности иерархической структуры ядра

Таблица 4.3.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Кол-во записей в БД</th>
<th>Размер БД, кбайт</th>
<th>Время запроса на выборку, с</th>
<th>Время запроса на подсчет количества записей, с</th>
<th>Время на чтение всех записей в БД, с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Количество файлов БД (таблиц) - 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Файл 1 (связь ОТДЕЛЫ-СОТРУДНИКИ-ИСПОЛНИТЕЛИ)</td>
<td>1000000</td>
<td>107268</td>
<td>0,4</td>
<td>0,05</td>
<td>398,2</td>
</tr>
<tr>
<td>3. Файл 2 (связь ЗАКАЗЧИКИ-КОНТРАКТЫ-ИСПОЛНИТЕЛИ)</td>
<td>1000000</td>
<td>136216</td>
<td>0,4</td>
<td>0,05</td>
<td>403,3</td>
</tr>
<tr>
<td>Общий размер БД</td>
<td>-</td>
<td>243484</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4.1.3. Многоуровневая структура ядра

Основные показатели эффективности организации многоуровневой структуры ядра показана в таблице 4.4.

Таблица 4.4.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Количество файлов БД</td>
<td>1</td>
</tr>
<tr>
<td>2. Количество записей в БД</td>
<td>1000000</td>
</tr>
<tr>
<td>3. Размер БД, кбайт</td>
<td>82236</td>
</tr>
<tr>
<td>4. Время запроса на выборку, с</td>
<td>0,5</td>
</tr>
<tr>
<td>5. Время запроса на подсчет количества записей, с</td>
<td>0,05</td>
</tr>
<tr>
<td>6. Время на чтение всех записей в БД, с</td>
<td>326,4</td>
</tr>
</tbody>
</table>
4.1.4. Мультипольная структура ядра

Основные показатели эффективности организации мультипольной структуры ядра показана в таблице 4.5.

Основные показатели эффективности мультипольной структуры ядра

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Количество файлов БД</td>
<td>1</td>
</tr>
<tr>
<td>2. Количество записей в БД</td>
<td>1000000</td>
</tr>
<tr>
<td>3. Размер БД, кбайт</td>
<td>86482</td>
</tr>
<tr>
<td>4. Время запроса на выборку, с</td>
<td>0,5</td>
</tr>
<tr>
<td>5. Время запроса на подсчет количества записей, с</td>
<td>0,05</td>
</tr>
<tr>
<td>6. Время на чтение всех записей в БД, с</td>
<td>316,3</td>
</tr>
</tbody>
</table>

4.2. Анализ экономической эффективности внедрения разработанных компонентов и системных связей в КИС лесопромышленного предприятия

Анализ экономической эффективности внедрения модуля базируются на методах расчета совокупной стоимости владения программного обеспечения и корпоративных систем управления [198-201].

Стоимость создания, внедрения и эксплуатации информационной системы включает следующие компоненты:

1. Общая стоимость всех компонентов программного обеспечения (ПО):
 - стоимость лицензий на использование (ПО);
 - затраты на обновления ПО;
 - затраты на поддержку ПО.

2. Общая стоимость аппаратного обеспечения:
 - стоимость ПК пользователей;
 - стоимость серверных станций (включая обеспечение электропитанием, серверы тестирования и пр.).
- общая стоимость обновлений и ремонтов аппаратного обеспечения.

3. Общая стоимость администрирование СУБД и аппаратного обеспечения (включая затраты, связанные с внедрением программного продукта).

4. Стоимость обучения персонала организации работе во внедряемой информационной среде.

5. Затраты, связанные с потерей времени персонала организации, при проведении обучения сотрудников.

Таким образом, были использованы следующие формулы.

Совокупная стоимость использования (Total Cost of Ownership):

\[TCO = SWC + HWC + ADC + SLC + TLC \text{, где} \]

SWC – стоимость использования самого программного продукта (Software Cost),

HWC – общая стоимость использования аппаратного обеспечения (Hardware Cost),

ADC – общая стоимость администрирования программного продукта за условленный период (Administrative Cost),

SLC – общая стоимость обучения персонала организации работе с программным продуктом (Staff Learning Cost),

TLC – затраты, связанные с потерей времени, использованного на обучение персонала (Time Losing Cost).

Стоимость использования программного продукта:

\[SWC = \min \left\{ \sum_{i=1}^{n} q_i \cdot (p_{ui} + u_{ui} + s_{ui}); \sum_{i=1}^{n} (p_{pi} + u_{pi} + s_{pi}) + \sum_{i=1}^{n} q_i \cdot (p_{ui} + u_{ui} + s_{ui}) \right\}, \]

где \(q_i \) – количество пользователей i-тм приложением программного продукта,

\(p_{ui} \) – стоимость лицензии i-того приложения для одного пользователя,

\(u_{ui} \) – стоимость обновления i-того приложения для одной лицензии,

\(s_{ui} \) – стоимость поддержки i-того приложения для одной лицензии,
\[p_{pi} - \text{стоимость лицензии } i\text{-го приложения для неограниченного количества пользователей}, \]

\[u_{pi} - \text{стоимость обновления } i\text{-го приложения для лицензии неограниченного количества пользователей}, \]

\[s_{ui} - \text{стоимость поддержки } i\text{-го приложения для лицензии неограниченного количества пользователей}. \]

Общая стоимость использования аппаратного обеспечения:

\[
HWC = \left(C_{pc} + \sum_{j=1}^{m} C_{paj} \cdot \left(\frac{1}{1+d_j} \right)^{t_j} \right) \cdot q_o + \left(C_s + \sum_{l=1}^{r} C_{sal} \cdot \left(\frac{1}{1+d_l} \right)^{t_l} \right),
\]

где

\[C_{pc} - \text{стоимость приобретения одного персонального компьютера для пользователя}, \]

\[C_{paj} - \text{стоимость последующего } j\text{-го обновления или ремонта компьютера}, \]

\[d_j, d_l - \text{учетные ставки (ставки рефинансирования) за периоды } t_j \text{ и } t_l, \]

\[q_o - \text{общее количество пользователей продуктом}, \]

\[C_s - \text{стоимость приобретения серверного оборудования (зависит от количества пользователей и желаемого качества работы программного продукта)}, \]

\[C_{sal} - \text{стоимость последующего } l\text{-го обновления или ремонта серверного оборудования}. \]

При расчете стоимости обновлений и ремонта, опираясь на данные статистики, считаем, что за 2 года использования восстановительная стоимость компьютера составит около 70% его первоначальной стоимости. Обновления компьютерного парка в данном случае планируются с частотой 1 раз в квартал, т.е. всего 8 обновлений (m=8, r=8). Ставки рефинансирования за последующие периоды были спрогнозированы методом экспоненциального сглаживания.

Общая стоимость внедрения и администрирования программного продукта:
\[ADC = g \cdot \sum_{k=1}^{z} A_{qk} \left(\frac{1}{1+d_{k}} \right)^{t_{k}}, \text{где} \]

- \(A_{qk} \) – стоимость администрирования данного программного обеспечения одним сетевым администратором при количестве пользователей \(q \) за 1 месяц в текущих ценах,
- \(d_{k} \) – учетная ставка за период \(t_{k} \),
- \(g \) – необходимое количество администраторов для функционирования системы.

В данном расчете в качестве базовых были использованы средние данные рынка труда о заработной плате администраторов программного обеспечения. Последующие значения оплаты администрирования за месяц были скорректированы с учетом среднегодового роста средней заработной платы в РФ.

Стоимость обучения персонала организации работе с программным обеспечением:

\[SLC = a \cdot q_{o} \cdot b \cdot e \left(\frac{1}{1+d_{o}} \right)^{t}, \text{где} \]

- \(a \) – количество часов в неделю, затрачиваемых на обучение одним пользователем,
- \(b \) – количество недель, необходимых для обучения пользователей,
- \(e \) – средняя стоимость одного часа обучения,
- \(d_{o} \) – учетная ставка на период обучения.

Считаем, что период обучения составит 4 часа в неделю на протяжении 4 недель через пол года после приобретения и внедрения программного продукта.

Стоимость времени затраченного персоналом на:

\[TLC = \sum_{h=1}^{y} a \cdot b \cdot x_{h} \left(\frac{1}{1+d_{o}} \right)^{t}, \text{где} \]

- \(x_{h} \) – оплата 1 часа повседневной работы \(h \)-го пользователя.
Затраты на внедрение и администрирование информационной системы являются одними из наиболее весомых. На рис. 4.1. изображена диаграмма сравнения средних стоимостей использования СУБД и редакторов приложений 3-х ведущих фирм-поставщиков на 1 человека по статьям затрат. Все показанные далее стоимостные величины измеряются в условно принятых единицах.

Рис. 4.1. Совокупная стоимость использования СУБД и редакторов приложений (по статьям затрат)

На рис. 4.1. введены следующие условные обозначения:
1 - стоимость использования программного обеспечения
2 – стоимость использования аппаратного обеспечения
3 – стоимость администрирования
4 – стоимость обучения персонала
5 – затраты, связанные с обучением работников
6 – консультационные услуги
7 – совокупная стоимость использования СУБД и редакторов приложений

Согласно вышеуказанных формул была подсчитана совокупная стоимость использования СУБД ADABAS и редактора приложений Natural при построении КИС лесопромышленного предприятия (таблица 4.6.).

Как видно из таблицы 4.7., затраты на внедрение КИС лесопромышленным предприятием напрямую зависят от количества пользователей системы. На рис. 4.2. показан график зависимости величины затрат на внедрение КИС лесопромышленного предприятия в среде ADABAS и Natural от численности персонала (количество пользователей КИС).

Величина затрат на внедрение КИС лесопромышленного предприятия составляет в среднем 36% от общей совокупной стоимости использования СУБД ADABAS и редактора Natural (таблица 4.7.).

Таким образом, использование модуля модификации позволяет сократить расходы на внедрение КИС лесопромышленного предприятия на 32% и более.
Совокупная стоимость использования СУБД ADABAS и редактора Natural

Таблица 4.1.

<table>
<thead>
<tr>
<th>Затраты</th>
<th>Количество пользователей внедряемой системы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1. Стоимость ПО СУБД ADABAS и редактора Natural</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8267</td>
</tr>
<tr>
<td>2. Стоимость аппаратного обеспечения</td>
<td>3988</td>
</tr>
<tr>
<td>3. Внедрение и администрирование</td>
<td>30607</td>
</tr>
<tr>
<td>4. Обучение персонала</td>
<td>1169</td>
</tr>
<tr>
<td>5. Потери времени</td>
<td>94</td>
</tr>
<tr>
<td>Итого:</td>
<td>44125</td>
</tr>
</tbody>
</table>

157
4.3. Выводы

1. Предложенный в монографии метод модификации КИС лесопромышленного предприятия реализован в наиболее подходящей среде в виде программного модуля, с использованием наиболее эффективных и наиболее точно отражающих особенности лесопромышленного предприятия структур хранения данных, методов доступа к данным и архитектуры системы.

2. Согласно проведенного анализа эффективности использования предложенного метода позволяет сократить затраты на внедрение и эксплуатацию КИС на 32% и более.

3. Реализованный метод модификации позволяет оптимизировать модульные структуры КИС, а также адаптировать их в соответствии с изменяющейся структурой организации, производственными и технологическими изменениями.

4. Эффективность предложенного метода подтверждается апробацией результата путем моделированием процесса модификации с различными характеристиками, а также практическим опытом реализации модуля модификации КИС лесопромышленного предприятия.
Доля затрат на внедрение КИС лесопромышленного предприятия

<table>
<thead>
<tr>
<th>Количество пользователей КИС</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>500</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Внедрение и администрирование</td>
<td>30607</td>
<td>30607</td>
<td>40316</td>
<td>67651</td>
<td>125571</td>
<td>231142</td>
<td>470436</td>
<td>720782</td>
<td>1249095</td>
<td>1777408</td>
<td>2141565</td>
</tr>
<tr>
<td>Совокупная стоимость использования ПО</td>
<td>44125</td>
<td>62019</td>
<td>96551</td>
<td>196215</td>
<td>358251</td>
<td>715229</td>
<td>1383696</td>
<td>2135271</td>
<td>3480339</td>
<td>5446972</td>
<td>6704052</td>
</tr>
<tr>
<td>Доля затрат на внедрение и администрирование, %</td>
<td>69,36</td>
<td>49,35</td>
<td>41,76</td>
<td>34,48</td>
<td>35,05</td>
<td>32,32</td>
<td>34,00</td>
<td>33,76</td>
<td>35,89</td>
<td>32,63</td>
<td>31,94</td>
</tr>
</tbody>
</table>
ЗАКЛЮЧЕНИЕ

Результаты исследований сводятся к следующему:

1. На основе анализа формирования учетных сообщений разработана обобщенная модель данных КИС лесопромышленного предприятия. Эта модель позволила разработать требования к среде разработки и эксплуатации КИС, предусмотреть наиболее подходящие способы хранения и доступа к данным, определить рекомендации по методам организации компонентов КИС лесопромышленного предприятия.

2. Были детально проанализированы структура и возможности СУБД ADABAS и редактора приложений Natural, на основании чего был сделан вывод о их соответствии требованиям к среде разработки КИС лесопромышленного предприятия.

3. Проведен анализ компонентов и системных связей КИС лесопромышленного предприятия в среде СУБД ADABAS и Natural.

4. Разработаны методы и алгоритмы изменения и оптимизации компонентов и системных связей КИС лесопромышленного предприятия в среде СУБД ADABAS и Natural.

5. Разработано программное обеспечение, реализующее модель КИС лесопромышленного предприятия в наиболее подходящей среде, с использованием наиболее эффективных и наиболее эффективных и наиболее точно отражающих особенности лесопромышленного предприятия структур хранения данных, методов доступа к данным, программных кодов и отчетных форм.

6. Проведенные в монографии исследования позволяют оптимизировать модульные структуры КИС, а также адаптировать их в соответствии с изменяющейся структурой организации, производственными и технологическими изменениями.

7. Анализ экономической эффективности использования предлагаемых методов и связей показал возможность сокращения совокупных затрат на использование системы в среднем на 32% и более.
8. Разработанное программное обеспечение позволяет смоделировать КИС лесопромышленного предприятия с необходимыми характеристиками и получить и опробовать результат до начала фактической эксплуатации КИС лесопромышленного предприятия.

9. При создании программного обеспечения были учтены различные виды производств деревообрабатывающей промышленности. Для КИС лесопромышленного предприятия всех перечисленных видов производств рекомендуются к использованию рассмотренные методы и системные связи.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

6. Зайцев С.Л. Автоматизированные системы управления предприятиями стандарта ERP/MRP II. М.:2001

27. J. Gray et al., «Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab and Sub-Totals», Data Mining and Knowledge Discovery, vol. 1, no. 1, 1997

43. Базы данных: достижения и перспективы на пороге 21-го столетия: Пер. с англ. / Под ред. А. Зильбершатца, М. Стоунбрекера и Дж. Ульмана // СУБД. №3 – 1996

50. Воронов М.П. Построение жестко фиксированной модели структуры организации средствами ADABAS и Natural при внедрении интегрированной системы управления / М.П. Воронов, М.П. Железняк,

51. Воронов М.П. Построение гибкой модели структуры организации средствами ADABAS и Natural при внедрении интегрированной системы управления / М.П. Воронов, М.П. Железняк, В.В. Томилин // Материалы всероссийской научно-технической конференции студентов и аспирантов: Материалы всероссийской научн.-техн. конф. – Екатеринбург: Уральский государственный лесотехнический университет, 2005. - С. 236.

52. Воронов М.П. Построение смешанной модели структуры организации средствами ADABAS и Natural при внедрении интегрированной системы управления / М.П. Воронов, М.П. Железняк, В.В. Томилин // Материалы всероссийской научно-технической конференции студентов и аспирантов: Материалы всероссийской научн.-техн. конф. – Екатеринбург: Уральский государственный лесотехнический университет, 2005. - С. 237.

55. Воронов М.П. Разработка приложений средствами СУБД ADABAS и Natural в распределенной среде в условиях создания информационной системы управления организацией / М.П. Воронов, А.С. Каменецких, Т.А.

61.Воронов М.П. Система коммуникаций в условиях создания интегрированной системы управления организацией в среде ADABAS и Natural / М.П. Воронов, В.П. Часовских // Научные труды международной научно-практической конференции “СВЯЗЬ-ПРОМ 2005” в рамках 2-го

64. Воронов М.П. Финансовая информационная модель в рамках построения системы принятия решений в среде ADABAS и Natural / М.П. Воронов, В.П. Часовских // Информационно-вычислительные технологии и приложения: сборник статей IV российско-украинского научно-технического и методического симпозиума. – Пенза: РИО ПГСХА, 2006. - С. 43-46.

70. Дик В.В. Методология формирования решений в экономических системах и инструментальные среды их поддержки. – М.: Финансы и статистика, 2001. – 300 с.
72. Зайцев Н.Г. Информационное и математическое обеспечение АСУП. – Киев: Техника, 1974. – 144 с.
75. Костяков С. ISO 9000 и проблемы информатизации предприятий // PC Week/RE.-1999.-№22.
96. Чаудхури С., Дайал У., Ганти В. Технология баз данных в системах поддержки принятия решений. // Открытые системы. СУБД. – 2002, №1. с 37-44.
97. Шибаев К.Н., Пантелейев В.Н., Репьев Ю.М. Процессы интеграции в АСУ. М. Финансы и статистика, 1982.
98. Щиборщ К.В. Интегрированная система управления промышленных предприятий России // Менеджмент в России и за рубежом – 2000, №4.
100. Верников Г. Г. Основные принципы выбора прикладного программного обеспечения для построения корпоративной информационной системы. – М: 2002.
104. Карпачев И.И. О стилях и классах (реальность и мифология компьютерных систем управления предприятием) // PC Week, 2000.
105. Капранов А. КИС: Факторы успешного внедрения

http://www.connect.ru/

108. Кузнецов С. Д. Проектирование и разработка корпоративных информационных систем. М: Центр Информационных Технологий, 1998.

110. Лысенко М.А., Осипов М.Г. Методики анализа и проектирования при построении корпоративных информационных систем // Нефть и Капитал. 2001. №7.

124. Матвейко А.П. Справочник мастера лесозаготовок - Москва:Экология,1993-286с
126. Желтов Е.М., Маврина Г.А. Основы технологии и организации труда на лесосеке - Лесная промышленность Москва 1977г.-126с.
127. Шелгунов Ю.В., Кутуков Г.М., Ильин Г.П. Машины и оборудование лесозаготовок, лесосплавного и лесного хозяйства. М.: Лесн. пром-ть, 1982. 520 с.
137. Коннолли, Томас, Бегг, Каролин, Страчан, Анна. Базы данных: проектирование, реализация и сопровождение. Теория и практика, 2-е

140. Кузнецов С. Д. Основы современных баз данных. М: Центр Информационных Технологий, 1998.

144. Системы управления базами данных ДИСОД / Е. С. Броневщук, В. И. Бурдаков, Л. И. Гуков и др.; Под общ. рук. В. И. Дракина. – М.; Финансы и статистика, 1987.-263 с.

149. Кузькин Б.С. Структура данных и управление. – М.: Наука, 1975. – 125 с.

156. Часовских В.П. Лингвистический подход к построению формальной модели базы данных. - Депонир. В ВИНИТИ, 1982, № 3941-82.
165. Ахтырченко К.В., Леонтьев В.В. Распределенные объектные технологии в информационных системах // СУБД, 1997, №5-6.
166. Дубова Н. Интегрированные системы управления распределенной корпорацией // Открытые Системы, 1998, №1.
168. Кузнецов М. Наследование реализации в распределенных объектных системах. // Открытые системы. СУБД. – 2002, №12. с 60-64.
181. ADABAS: описание утилит. Руководство пользователей.
182. NATURAL: операторы и синтаксис языка. Руководство пользователей.

Научное издание

Виктор Петрович Часовских
Михаил Петрович Воронов

исследование системных связей и закономерностей функционирования корпоративной информационной системы лесопромышленного предприятия в среде ADABAS и NATURAL

Монография: электронное издание

Второе издание
исправленное и дополненное

Компьютерная верстка М.П. Воронова

Уральский государственный лесотехнический университет
620100, Екатеринбург, ул. Сибирский тракт, 37